Zum Inhalt springen

Extractive Summarisation for German-language Data: A Text-level Approach with Discourse Features.

Author: Hewett, F. & Stede, M.
Published in: Proceedings of the 29th International Conference on Computational Linguistics (COLING), 756-765
Year: 2022
Type: Academic articles

We examine the link between facets of Rhetorical Structure Theory (RST) and the selection of content for extractive summarisation, for German-language texts. For this purpose, we produce a set of extractive summaries for a dataset of German-language newspaper commentaries, a corpus which already has several layers of annotation. We provide an in-depth analysis of the connection between summary sentences and several RST-based features and transfer these insights to various automated summarisation models. Our results show that RST features are informative for the task of extractive summarisation, particularly nuclearity and relations at sentence-level.

Visit publication

Publication

Connected HIIG researchers

Freya Hewett

Assoziierte Forscherin: AI & Society Lab

Aktuelle HIIG-Aktivitäten entdecken

Forschungsthemen im Fokus

Das HIIG beschäftigt sich mit spannenden Themen. Erfahren Sie mehr über unsere interdisziplinäre Pionierarbeit im öffentlichen Diskurs.