Skip to content
celeste-makow-5foF73voxfY-unsplash
23 February 2016

Misconceptions about academic data sharing

Written by Benedikt Fecher & Gert Wagner. 

In a recent editorial in the New England Journal of Medicine, the authors Longo and Drazen critically assessed the concept of data sharing in medicine. Their main concern is that a “new class of research person will emerge” that uses data for their own original research questions. The authors, although indirectly, later refer to this class of researcher as “research parasites“. The label “research parasites” does certainly not reflect the zeitgeist of an increasingly collaborative research and initiatives towards openness and transparency. However, it reflects common misconceptions about academic data sharing.

Longo and Drazen make the (valid) point that data might be misinterpreted. On the other hand misinterpretation might be a matter of insufficient data documentation by primary researchers. Moreover, potential misinterpretation cannot be an argument for not sharing research data.

Longo and Drazen miss the very point of scientific research when they write, that the researchers may “even use the data to try to disprove what the original investigators had posited“. It is at the core of the scientific paradigm that researchers take nothing as final truth. This is what Popper proposed in his critical rationalism and Merton in his conceptualization of skepticism.

Longo’s and Drazan’s requirement to “start with a novel idea, one that is not an obvious extension of the reported work” is simply misleading. Especially medical research (which is the subject of Longo’s and Drazan’s) can immensely profit from old ideas through meta-analyses and replication studies that use original datasets.

However the authors touch upon a valid point: the issue of adequate credit for scientific data sharing. They indicate that the adequate form of recognition for data sharing is co-authorship. They suggest to work “symbiotically, rather than parasitically, with the investigators holding the data, moving the field forward in a way that neither group could have done on its own.”

While that is certainly true in particular cases, we argue that co-authorship as the solely instrument for giving credit will unnecessarily restrict the potential of data sharing and can even be to the detriment of the original researcher, for instance if the resulting publications lack quality. And in the case of replication studies, co-authorship makes no scientific sense.

The best instrument for giving “credit where credit is due” would be a much higher appraisal of data sharing by research communities via citations of data sets and the consideration of data “production” in career prospects, funding application and evaluations.

With this end in mind, this “new class of research person” is exactly the opposite of a “research parasite”. This person would be someone who is essential to the scientific enterprise in an increasingly data-intensive and collaborative environment. Longo and Drazen’s editorial however shows that there is still a long way to go before we reach Open Science.

This post represents the view of the author and does not necessarily represent the view of the institute itself. For more information about the topics of these articles and associated research projects, please contact info@hiig.de.

Benedikt Fecher, Dr.

Associate Researcher & Former Head of Research Programme: Knowledge & Society

Sign up for HIIG's Monthly Digest

HIIG-Newsletter-Header

You will receive our latest blog articles once a month in a newsletter.

Explore current HIIG Activities

Research issues in focus

HIIG is currently working on exciting topics. Learn more about our interdisciplinary pioneering work in public discourse.

Further articles

Three groups of icons representing people have shapes travelling between them and a page in the middle of the image. The page is a simple rectangle with straight lines representing data used for people analytics. The shapes traveling towards the page are irregular and in squiggly bands.

Empowering workers with data

As workplaces become data-driven, can workers use people analytics to advocate for their rights? This article explores how data empowers workers and unions.

A stylised illustration featuring a large "X" in a minimalist font, with a dry branch and faded leaves on one side, and a vibrant blue bird in flight on the other. The image symbolises transition, with the bird representing the former Twitter logo and the "X" symbolising the platform's rebranding and policy changes under Elon Musk.

Two years after the takeover: Four key policy changes of X under Musk

This article outlines four key policy changes of X since Musk’s 2022 takeover, highlighting how the platform's approach to content moderation has evolved.

The picture shows a tractor cultivating a field from above. One side of the field is covered in green, the other is dry and earthy. This is intended to show that although sustainable AI can be useful in the fight against climate change, it also comes at a high ecological cost.

Between vision and reality: Discourses about Sustainable AI in Germany

This article explores Sustainable AI and Germany's shift from optimism to concern about its environmental impact. Can AI really combat climate change?