Zum Inhalt springen
169 HD – AI is neutral – 1
10 Mai 2021| doi: 10.5281/zenodo.4745653

Mythos: KI macht Schluss mit Diskriminierung

Als vermeintlich objektive Spitzentechnologie besteht die Hoffnung, dass KI menschliche Schwächen überwinden kann. Manche Menschen glauben, dass KI frei von menschlichen Voreingenommenheiten und Fehlern sei und auf Grundlage fairer und objektiver Entscheidungen so der Diskriminierung einen Riegel vorschieben könne.

Wir entmystifizieren diese Behauptung, indem wir uns konkrete Beispiele dafür ansehen, wie KI Ungleichheiten (re)produziert, und verbinden diese mit verschiedenen Aspekten, die helfen, sozio-technische Verstrickungen zu veranschaulichen. Unter Rückgriff auf eine Reihe kritischer WissenschaftlerInnen argumentieren wir, dass dieser vereinfachende Mythos sogar gefährlich sein könnte und zeigen, was dagegen zu tun ist.

Mythos

KI wird die Diskriminierung beenden (oder ist zumindest weniger diskriminierend als fehlbare und unfaire Menschen).


Als Teil der Gesellschaft ist KI tief in ihr verwurzelt und als solche nicht von Strukturen der Diskriminierung zu trennen. Aufgrund dieser sozio-technischen Einbettung kann KI Diskriminierung nicht von selbst zum Verschwinden bringen.

Vortrag ansehen

Material

Folien der Präsentation
SCHLÜSSELLITERATUR

Benjamin, R. (2019a): Captivating Technology. Race, Carceral Technoscience, and Liberatory Imagination in Everyday Life. Durham: Duke University Press.

Benjamin, R. (2019b): Race after technology: abolitionist tools for the new Jim code. Cambridge: UKPolity.

Criado-Perez, C. (2020): Unsichtbare Frauen. Wie eine von Daten beherrschte Welt die Hälfte der Bevölkerung ignoriert. München: btb Verlag.

D’Ignazio, C.; Klein, L. F. (2020): Data Feminism.
Strong ideas series Cambridge, Massachusetts London, England: The MIT Press.

Buolamwini, J.; Gebru, T. (2018): Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In: Proceedings of Machine Learning Research 81. Paper präsentiert bei der Conference on Fairness, Accountability, and Transparency, 1–15.

ZUSATZLITERATUR

Eubanks, V. (2017): Automating inequality. How high-tech tools profile, police, and punish the poor. First Edition. New York, NY: St. Martin’s Press

O’Neil, C. (2016): Weapons of math destruction. How big data increases inequality and threatens democracy. First edition. New York: Crown.

Zuboff, S. (2020): The Age of Surveillance Capitalism. The Fight for a Human Future at the new Frontier of Power. First Trade Paperback Edition. New York: PublicAffairs.

Cave, S.; Dihal, K. (2020): The Whiteness of AI. In: Philosophy & Technology 33(4), 685–703.
UNICORN IN THE FIELD

Epicenter.works
AlgorithmWatch
netzforma* e.V.

Über die Autor*innen

Miriam Fahimi, Digital Age Research Center (D!ARC), Alpen-Adria-Universität Klagenfurt

Miriam ist Marie Skłodowska-Curie Fellow im Horizon 2020 ITN-ETN Marie Curie Training Network “NoBIAS – Artificial Intelligence without Bias” und wissenschaftliche Projektmitarbeiterin am Digital Age Research Center (D!ARC) der Alpen-Adria-Universität Klagenfurt. Sie promoviert in Science and Technology Studies an der Alpen-Adria-Universität Klagenfurt bei Katharina Kinder-Kurlanda. Ihre Forschungsinteressen umfassen algorithmische Fairness, Wissenschaftsphilosophie, Wissenschafts- und Technologiestudien und feministische Theorie.

@feminasmus

Phillip Lücking

Phillip ist wissenschaftlicher Mitarbeiter und Doktorand an der Universität Kassel, Gender/Diversity in Informatiksystemen (GeDIS). Er absolvierte sein Studium der Intelligenten Systeme an der Universität Bielefeld (MSc). Sein Forschungsinteresse umfasst maschinelles Lernen und Robotik in Bezug auf ihre gesellschaftlichen Auswirkungen sowie die Frage, wie diese Technologien für das Gemeinwohl genutzt werden können.


Why, AI?

Dieser Beitrag ist Teil unseres Projekts “Why, AI?”. Es ist eine Lernplattform, die euch hilft, mehr über die Mythen und Wahrheiten rund um Automatisierung, Algorithmen, die Gesellschaft und uns selbst herauszufinden. Sie wird kontinuierlich mit neuen Beiträgen befüllt.

Alle Mythen erkunden


Dieser Beitrag spiegelt die Meinung der Autorinnen und Autoren und weder notwendigerweise noch ausschließlich die Meinung des Institutes wider. Für mehr Informationen zu den Inhalten dieser Beiträge und den assoziierten Forschungsprojekten kontaktieren Sie bitte info@hiig.de

Auf dem Laufenden bleiben

HIIG-Newsletter-Header

Jetzt anmelden und  die neuesten Blogartikel einmal im Monat per Newsletter erhalten.

Forschungsthema im Fokus Entdecken

Du siehst Eisenbahnschienen. Die vielen verschiedenen Abzweigungen symbolisieren die Entscheidungsmöglichkeiten von Künstlicher Intelligenz in der Gesellschaft. Manche gehen nach oben, unten, rechts. Manche enden auch in Sackgassen. Englisch: You see railway tracks. The many different branches symbolise the decision-making possibilities of artificial intelligence and society. Some go up, down, to the right. Some also end in dead ends.

Künstliche Intelligenz und Gesellschaft

Die Zukunft der künstliche Intelligenz funktioniert in verschiedenen sozialen Kontexten. Was können wir aus ihren politischen, sozialen und kulturellen Facetten lernen?

Weitere Artikel

Drei Gruppen von Menschen haben Formen über sich, die zwischen ihnen und in Richtung eines Papiers hin und her reisen. Die Seite ist ein einfaches Rechteck mit geraden Linien, die Daten darstellen. Die Formen, die auf die Seite zusteuern, sind unregelmäßig und verlaufen in gewundenen Bändern.

Beschäftigte durch Daten stärken

Arbeitsplätze werden zunehmend datafiziert. Doch wie können Beschäftigte und Gewerkschaften diese Daten nutzen, um ihre Rechte zu vertreten?

Eine stilisierte Illustration mit einem großen „X“ in einer minimalistischen Schriftart, mit einem trockenen Zweig und verblichenen Blättern auf der einen Seite und einem leuchtend blauen Vogel im Flug auf der anderen Seite. Das Bild symbolisiert einen Übergangsprozess, wobei der Vogel das frühere Twitter-Logo darstellt und das „X“ das Rebranding der Plattform und Änderungen im Regelwerk von X symbolisiert.

Zwei Jahre nach der Übernahme: Vier zentrale Änderungen im Regelwerk von X unter Musk

Der Artikel beschreibt vier zentrale Änderungen im Regelwerk der Plattform X seit Musks Übernahme 2022 und deren Einfluss auf die Moderation von Inhalten.

Das Bild zeigt einen Traktor von oben, der ein Feld bestellt. Eine Seite des Feldes ist grün bewachsen, die andere trocken und erdig. Das soll zeigen, dass nachhaltige KI zwar im Kampf gegen den Klimawandel nützlich sein, selbst aber auch hohe Kosten für die Umwelt verursacht.

Zwischen Vision und Realität: Diskurse über nachhaltige KI in Deutschland

Der Artikel untersucht die Rolle von KI im Klimawandel. In Deutschland wächst die Besorgnis über ihre ökologischen Auswirkungen. Kann KI wirklich helfen?