Zum Inhalt springen
franck-v-rDxP1tF3CmA-unsplash Cropped
06 August 2019| doi: 10.5281/zenodo.3365930

Robot Judge: Verurteilt im Namen des Algorithmus?

Kleinere Rechtsstreitigkeiten sollen in Estland von Künstlicher Intelligenz entschieden werden. In den USA fällen Algorithmen bereits Urteile über Strafmaß und Kautionshöhe. Auch hierzulande wird darüber debattiert, ob algorithmenbasierte Entscheidungssysteme, die in diesem Kontext oft als “Roboter” bezeichnet werden, zukünftig Recht sprechen. Franziska Oehmer zeigt, welche Chancen und Herausforderungen damit verbunden sind. 

Es gibt kaum einen Bereich, eine Branche oder Profession in der nicht über Möglichkeiten, Chancen und Risiken des Einsatzes von Künstlicher Intelligenz (KI oder engl. AI) diskutiert wird – sei es im Medizinbereich in der Diagnostik oder zum Monitoren von Gesundheitsdaten, in der Pflege oder bei der Bewerberauswahl in Personalabteilungen. Die Justiz galt lange Zeit als weitgehend zurückhaltend gegenüber digitalen Entwicklungen. Doch spätestens seit der Einführung von algorithmenbasierten, automatisierten Entscheidungssystemen, die in den USA über das Strafmaß oder auch die Kaution mitbestimmen und jüngst auch in Estland bei Streitigkeiten mit Schadenssummen von bis zu 6.400 Euro zur Anwendung kommen (sollen), wird auch hierzulande in der Öffentlichkeit und Fachkreisen über den Einsatz von „Robotern als Richtern und den damit verbundenen Risiken und Chancen debattiert.

Herausforderungen von algorithmenbasierten Urteilen

Das Recht und die jeweilige Gesetzeslage sei, so der Tenor der Technikskeptiker [1], zu komplex, um in Algorithmen übersetzt werden zu können. Zudem könne eine „Maschine“ den Spezifika des zu beurteilenden juristischen Einzelfalls nicht gerecht werden: So müsse ein Gericht sämtliche Tatumstände und relevanten Merkmale eines (vermeintlichen) Täters wie persönliche Eigenschaften, Lebensumstände und mögliche Vorstrafen bei der Urteilsfindung berücksichtigen. Dabei kann auch das Verhalten der Prozessbeteiligten vor Ort im Gerichtssaal eine Rolle spielen. Auch bereits eine durch starke mediale Berichterstattung während des Prozesses erlittene öffentliche Anprangerung des Beschuldigten kann mildernd bei der Bemessung des Strafmaßes berücksichtigt werden. All diese Informationen in digitale Daten zu übertragen und damit maschinellem Entscheiden zugänglich zu machen, ist eine Herausforderung und wird Prognosen zufolge auch zukünftig nicht oder nur bedingt in vollem Umfang gelingen. Und selbst wenn dies der Fall sein sollte, so stünde eine auf Künstlicher Intelligenz basierte Justiz jedoch vor einem Legitimationsproblem: Wenn sie ein Urteil fällt, so bleibt der dahinter liegende Mechanismus, der zum Entscheid geführt hat, als Black Box intransparent, damit nicht nachvollziehbar und kontrollierbar. Zudem würden Entscheide einer Künstlichen Intelligenz neue gesellschaftliche und technologische Trends oder sich wandelnde Wertvorstellungen bspw. zur Stellung gleichgeschlechtlicher Partnerschaften oder zum Umwelt- und Klimaschutz nicht mitberücksichtigen oder gestalten können. Diese müssten erst als Input in Form neuer Daten oder Programmierbefehle hinzugegeben werden. Sie würde jedoch nicht von einem Robot Judge selbst entwickelt werden können. Das Recht würde dann nicht mehr gesellschaftliche Verhältnisse widerspiegeln. Eine wichtige Grundlage für die Anerkennung der Justiz durch die Bevölkerung wäre damit nicht mehr gegeben. 

Chancen von algorithmenbasierten Urteilen

Andererseits, so die mit Künstlicher Intelligenz verbundene Hoffnung [2], sind algorithmenbasierte Entscheide gerechter, da hier keine persönlichen Präferenzen, Einstellungen oder Vorurteile des Gerichts zum Tragen kommen können. So würden diskriminierende Entscheide, wie sie US-Gerichten häufig bei der Verurteilung von Beschuldigen mit Migrationshintergrund unterstellt werden, unmöglich gemacht. Voraussetzung hierfür wäre allerdings, dass die Daten mit denen Algorithmen trainiert werden, auch neutral sind. Das sind sie aber meist nicht. Denn die Daten stammen von vergangenen menschlichen und damit möglicherweise verzerrten Urteilen. So verstärkt die vermeintlich objektive Technik aufgrund der ihr zu Grunde liegenden Datenbasis meist noch bestehende vorurteilsbehaftete Verzerrungen bei der Urteilsfindung, statt sie zu verobjektivieren [3]: Einem schwarzen Beschuldigten aus armen Verhältnissen, der in einem bestimmten Ortsteil wohnt, wird von einer algorithmenbasierten Software eine höhere Rückfallwahrscheinlichkeit zugesprochen als einem weißen Beschuldigten der Mittelschicht aus einem anderen Wohnort – beim selben Vergehen. 

In diesen Fällen werden die mit der Künstlichen Intelligenz verbundenen Hoffnungen nicht eingelöst. In weniger komplexen Fällen, jedoch, bei denen nicht über Haftstrafen, sondern über einen geringen Streitwert wie bspw. beim Falschparken verhandelt wird, wie es in Estland vorgesehen ist, kann mit Künstlicher Intelligenz die Arbeit der Justiz erheblich entlastet werden: Hier entscheiden „Robot Judges“ schnell und effizient über vergleichsweise einfache und eindeutige Fälle auf der Basis einer mehrheitlich einheitlichen präjudiziellen Rechtsprechung. Zudem kann mithilfe Künstlicher Intelligenz die Recherche nach Mustern in der vergangenen Rechtsprechung oder der juristischen Lehrmeinung, aus denen wiederum Entscheidempfehlungen abgeleitet werden können, erheblich vereinfacht werden. Dem Gericht bliebe somit deutlich mehr Zeit, um sich komplexeren Gerichtsfällen zu widmen und hier ein begründetes und transparentes Urteil zu fällen. 


Quellenverzeichnis

[1] Albrecht v. Graevenitz. Zwei mal Zwei ist Grün“ – Mensch und KI im Vergleich. Zeitschrift für Rechtspolitik, 2018, S. 238-241.

[2] Ebenda.

[3] Dressel Julia; Hany Farid, 2018. The accuracy, fairness, and limits of predicting recidivism. Science Advances 4(1), S.1-5. 


Dr. Franziska Oehmer ist Oberassistentin und Dozentin am Departement für Kommunikationswissenschaft und Medienforschung an der Universität Fribourg (CH) und ehemalige Fellow am Humboldt Institut für Internet und Gesellschaft. Ihre Forschungsinteressen beinhalten Medialisierung des Rechts, politische Kommunikation und Mediengovernance.


Dieser Beitrag spiegelt die Meinung der Autorinnen und Autoren und weder notwendigerweise noch ausschließlich die Meinung des Institutes wider. Für mehr Informationen zu den Inhalten dieser Beiträge und den assoziierten Forschungsprojekten kontaktieren Sie bitte info@hiig.de

Franziska Oehmer, Dr.

Ehem. Fellow: Entwicklung der digitalen Gesellschaft

Auf dem Laufenden bleiben

HIIG-Newsletter-Header

Jetzt anmelden und  die neuesten Blogartikel einmal im Monat per Newsletter erhalten.

Forschungsthema im Fokus Entdecken

Plattform Governance

In unserer Forschung zur Plattform Governance untersuchen wir, wie unternehmerische Ziele und gesellschaftliche Werte auf Online-Plattformen miteinander in Einklang gebracht werden können.

Weitere Artikel

Drei Gruppen von Menschen haben Formen über sich, die zwischen ihnen und in Richtung eines Papiers hin und her reisen. Die Seite ist ein einfaches Rechteck mit geraden Linien, die Daten darstellen. Die Formen, die auf die Seite zusteuern, sind unregelmäßig und verlaufen in gewundenen Bändern.

Beschäftigte durch Daten stärken

Arbeitsplätze werden zunehmend datafiziert. Doch wie können Beschäftigte und Gewerkschaften diese Daten nutzen, um ihre Rechte zu vertreten?

Eine stilisierte Illustration mit einem großen „X“ in einer minimalistischen Schriftart, mit einem trockenen Zweig und verblichenen Blättern auf der einen Seite und einem leuchtend blauen Vogel im Flug auf der anderen Seite. Das Bild symbolisiert einen Übergangsprozess, wobei der Vogel das frühere Twitter-Logo darstellt und das „X“ das Rebranding der Plattform und Änderungen im Regelwerk von X symbolisiert.

Zwei Jahre nach der Übernahme: Vier zentrale Änderungen im Regelwerk von X unter Musk

Der Artikel beschreibt vier zentrale Änderungen im Regelwerk der Plattform X seit Musks Übernahme 2022 und deren Einfluss auf die Moderation von Inhalten.

Das Bild zeigt einen Traktor von oben, der ein Feld bestellt. Eine Seite des Feldes ist grün bewachsen, die andere trocken und erdig. Das soll zeigen, dass nachhaltige KI zwar im Kampf gegen den Klimawandel nützlich sein, selbst aber auch hohe Kosten für die Umwelt verursacht.

Zwischen Vision und Realität: Diskurse über nachhaltige KI in Deutschland

Der Artikel untersucht die Rolle von KI im Klimawandel. In Deutschland wächst die Besorgnis über ihre ökologischen Auswirkungen. Kann KI wirklich helfen?