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ABSTRACT
Named Entity Recognition (NER) is a supervised machine learning task that 
finds various applications in automated content analysis, as the identification 
of entities is vital for understanding public discourse. However, sometimes 
the standard NER labels are not specific enough for a given domain. We 
introduce Public Entity Recognition (PER). PER is a domain-specific version of 
NER, that is trained for five entity types that are common to public discourse: 
politicians, parties, authorities, media, and journalists. PER can be used for 
pre-processing documents, in a pipeline with other classifiers or directly for 
analyzing information in texts. The taxonomy for PER is taken from the 
database of (German) public speakers and aims at low-threshold integration 
into computational social science research. We experiment with different 
training settings, involving weakly supervised training and training on manu-
ally annotated data. We evaluate multilingual transformer models of differ-
ent sizes against rule-based entity matching and find that the models do not 
only outperform the baseline but also reach competitive absolute scores of 
around .8 and higher in F1. We further test for generalization and domain 
adaptation. We show that with only around 100–150 additional sentences, 
the model can be adapted to new languages.

Introduction

Deploying computational tools for content analysis has become increasingly popular in commu-
nication research and political science in recent years. The use of computational tools allows 
researchers to move from laboratory environments to actual online behavior and “from small-N to 
large-N” (van Atteveldt & Peng, 2018). One recurring aspect of content analysis is identifying 
public or political entities, like politicians, parties, or authorities. Recognizing these entities is 
essential for understanding political dynamics and the public discourse. In this paper, we introduce 
Public Entity Recognition (PER), a domain-specific version of Named Entity Recognition (NER) 
that aims at recognizing public entities at the token level. We conduct extensive testing and 
validation in order to improve the reliability of our models, to provide transparency on possible 
gender biases, and to document its hardware requirements and its ability for adaptation. While 
PER is trained on German language data, we show that it requires only few resources for 
adaptation to new languages and domains. We aim to tackle common issues of computational 
tools for social science research, such as the prioritization of the English language (Baden et al.,  
2022) and the scalability and accessibility of these tools (Trilling & Jonkman, 2018). Our models 
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are available on Huggingface, a well-established platform, in order to allow easy integration into 
common workflows.1

By identifying public entities, PER aims at a very basic task that finds a variety of possible 
applications in communication research and political science. It can be used for pre-processing text 
data, for example, by classifying topics for which the entities are used as proxies. Another option is to 
integrate PER into a larger pipeline of computational methods for content analysis in order to not only 
identify public entities but to extract more complex information on them (Pilny et al., 2019). However, 
it can also be used in isolation and for direct application, for instance, to measure individualization, 
understood as the visibility of political leaders, which can be measured as the ratio of mentions of 
politicians and parties (Van Aelst et al., 2012).

This work is partly motivated by the introduction of the DBoeS database of public speakers 
(Schmidt et al., 2023), which lists actors that contribute to the German social public.2 As (Baden 
et al., 2022) note, the development of computational methods is often disconnected from social science 
research. This is, for example, the case if established knowledge from the social sciences is not reflected 
in the computational tools. We aim at integrating insights from communication research into PER 
from the start. The DBoeS database is used to guide the data selection, for deriving the entity types of 
PER, and for weakly supervised training. By incorporating the database into our model, we hope to 
meet the needs of social scientists.

In this study, we tackle several methodological challenges that accompany NER and weak super-
vision. Our aim is to build a model that a) works better than simple key-word matching, b) reaches 
competitive results compared to other domain-specific NER models, c) generalizes rather than 
memorizes, and d) adapts with only small effort to new domains and languages.3

Our strategy is to use continuous fine-tuning (CFT), i.e., fine-tuning in several steps on different 
datasets and to create step by step a large PER-dataset in a weakly supervised manner and with 
a bootstrapping approach, i.e., by iteratively using a model to get better and better labels. We evaluate 
the model on manually annotated data from different domains and languages and explicitly test if the 
model generalizes successfully and how much new data is required to adapt it to new languages and 
domains. We find that it is possible to outperform a key-word search by far and to reach an F1-score of 
around 0.8 on data from the same but also other domains than the training data. Moreover, with only 
100–150 manually annotated sentences, the model can be adapted to new languages, such as English or 
Spanish, and reach the same scores as on German texts. We end with recommendations for future 
research to build on our study and to extend our own taxonomy.

Related work

Automated content analysis and named entity recognition (NER)

Content analysis is a key method in communication research and other social sciences and it is 
increasingly performed with the aid of computational methods. While these methods are often rule- 
based keyword matching, machine learning (van Atteveldt et al., 2021) and especially transfer learning 
play a significant role, too (Kroon et al., 2023). One sub-process that frequently occurs in content 
analysis is the identification of named entities, such as persons or organizations (Pilny et al., 2019). 
This is little surprising as the dynamics of public discourse cannot be understood without reference to 
individual actors.

(Balluff et al., 2024) provide a review of multilingual NER tools for the social sciences. They found 
that despite recent progress in NLP, that is often due to the transformer architecture, most of the 
reviewed approaches use dictionaries and only few make use of supervised machine learning of which 

1https://huggingface.co/Sami92
2“gesellschaftliche Öffentlichkeit.”
3The code can be accessed at https://osf.io/4fhze/
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transformer models make up only a subset. However, in their experiments they find that XLM-R 
(Conneau et al., 2020) reaches the best performance and the second-best inference speed. Moreover, 
due to its multilingual pre-training, XLM-R is able to identify entities in languages for which it was not 
NER-fine-tuned (Tolochko et al., 2024) conduct experiments to find out about the effect of keeping or 
removing named entities from corpora on topic modeling. They find that named entities not only 
influence structural properties of the topic models like the proposed number of topics but also affect 
the (human) interpretability of the topics. They conclude that keeping named entities can bias the 
model output with regard to, for example, the association of a politician or party with a certain topic.

However, while the use of automated methods for NER is frequent, there is little research in 
political science and communication research on developing custom methods for this task.4 Our 
discussion of existing methods is therefore mostly limited to research in computer science and natural 
language processing (NLP).

(Jehangir et al., 2023) describe Named Entity Recognition (NER) as “the process of identifying 
numerous segments of information referenced in a text and then classifying them into pre-established 
categories.” For classical NER, these pre-established categories are persons, locations, organizations, 
and miscellaneous. NER is a sequence tagging or token classification task. This means that while the 
input to a NER model is a text span, for instance a sentence or an entire paragraph, the span is not 
classified as a whole but instead each segment (i.e., a word or sub-word) is assigned its own class label.

The most popular dataset for training NER models is CoNLL-2003 (Tjong Kim Sang & De Meulder,  
2003. The data involves several languages, such as English (taken from Reuter’s news stories) and German 
(taken from articles of the Frankfurter Rundschau). Benchmarking NER models often happens on CoNLL- 
2003 due to its accessibility. One key limitation, however, is its age. The articles for CoNLL-2003 range from 
1996 to 1997. A more recent German language dataset for NER is provided by (Benikova et al., 2014), which 
follows the normal NER-scheme with four classes but also accounts for nested entities. Another widely used 
dataset for NER is OntoNotes (Weischedel et al., 2013). The taxonomy of OntoNotes is more fine-grained 
than that of CoNLL-2003. It involves the same four class types but also 14 additional ones like Date, Event, 
Law, or Product. An example for a dataset drawn from Tweets is WNUT-17 (Derczynski et al., 2017), which 
comprises some additional classes and for which current ranks document an F1 of 0.61 (Wang et al., 2021).5

(Yu et al., 2020) provide a comprehensive overview of the scores (F1) of recent approaches to NER 
on the different versions of the CoNLL-2003 dataset. On the English version of CONLL-2003, the 
scores range from 0.916 to 0.935. On the German version, they range from 0.788 to 0.903. For Spanish 
they range from 0.858 to 0.903 and from 0.817 to 0.937 for Dutch. More recently (Schweter & Akbik,  
2021), reach a score of 0.9309 on the German CoNLL-2003 dataset. We take their approach as role- 
model for our experiments (further specified in Methods-section).

Domain-specific NER

Domain-specific NER can be understood in different ways: Either it is meant as NER for specific 
document types such as social media, newspaper articles, or novels or as NER with domain-specific 
class labels such as medical entities, fine-grained locations, or – as for our case – public entities. Often, 
the second type comes with the first, because domain-specific labels tend to occur more frequently in 
documents of the same domain. For the present study, domain-specific NER is understood as NER 
with custom class labels, i.e., NER that classifies public entities rather than the classical entities like 
persons, locations, etc. However, our aim is to build models that work for various types of documents. 
Accordingly, we will also turn to domain generalization.

The most extensive approach to domain-specific NER is CrossNER (Liu et al., 2021). CrossNER 
contains five domains: politics, natural science, music, literature, and artificial intelligence (AI). For 

4To our best knowledge, there is no research in journals like Computational Communication Research, Communication Methods and 
Measures, or Political Analysis that is dedicated to developing custom NER models.

5https://paperswithcode.com/sota/named-entity-recognition-on-wnut-2017
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each of these domains, they label roughly 1000 sentences from Wikipedia, respectively. For the 
politics-domain (Liu et al., 2021), use the classical NER categories and add: Politician, Political 
Party, Event, Election, and Country. Their maximum F1-score for this domain is 0.728. For the 
other domains, it ranges from ~0.63 to ~0.74. Another approach to domain-specific NER comes 
from (Ushio et al., 2022). Their dataset, TweetNER7, consists of about 11.000 Tweets and the labels 
are person, location, corporation, creative work, group, product, and event. They report a maximum 
F1-score of 0.665. Other approaches to domain-specific NER include: Fine-grained locations (Chen 
et al., 2022) or manufacturing domain (Kumar & Starly, 2022). In line with (Balluff et al., 2024), most 
of the recent approaches to (domain-specific) NER use the transformer architecture (Table 1).

All of the mentioned approaches to domain-specific NER document strong variance in the 
performance on different class-labels. For example (Ushio et al., 2022), report an F1-score of about 
0.8 for the category person but only 0.4 for the category creative work. They note that the performance 
correlates with the number of training examples per class. They further add that the entity diversity 
plays a role for the performance: Classes with a higher number of unique tokens tend to be more 
difficult.

Weakly supervised learning (WSL)

NER is a task that belongs to the field of supervised machine learning (SML). For SML a dataset, 
e.g., a text corpus, is labeled by annotators and subsequently a statistical model is trained on this data. 
The aim of SML is to build an automated classifier that performs the same task as the annotators did 
but on new data. For classical SML, the annotators are (trained) human coders. In contrast, weakly 
supervised learning (WSL) is an approach to machine learning that uses hard-coded rules or other 
heuristics (weak annotators, in the following) to label a dataset and prepare it for supervised learning. 
Since human annotations are resource-intensive in terms of time and money, WSL enjoys popularity 
in low-resource settings. While being resource-efficient, the major drawback of WSL is that the 
resulting weakly labeled dataset comes with a high noise rate, i.e., many incorrect labels. More 
formally, let Dw ¼ f xi; byið Þg

N
i¼1 and Dc ¼ xi; yið Þf g

N
i¼1 be two datasets, whereas the subscript “w” 

indicates that the labels ŷ are derived by weak annotation and the subscript “c” indicates that the 
labels y are derived via human (clean) annotation.6 The goal of WSL is to train a model on Dw and to 
generalize well on Dc

Recent approaches to WSL use different strategies to achieve this goal. Yu et al. (2021) introduce 
COSINE. This method uses a set of weakly labeled data for the initial training of a model and in 
a second step, soft pseudo-labels are derived for additional data using contrastive learning. They test 
the method on different datasets (including token classification) and report an increased performance 
when compared to previous baselines. (Liu et al., 2021) use a method in which the unlabeled data is 
automatically re-labeled over multiple rounds and apply this method to NER. They report an F1-score 

Table 1. Overview of recent approaches to (domain-specific) NER.

Type Publication Dataset Lang. Classes Architecture F1

Classical NER Yu et al. (2020) CoNLL-2003 EN 4 BERT+LSTM .94
Yu et al. (2020) OntoNotes EN 18 BERT+LSTM .91
Schweter & Akbik (2021) CoNLL-2003 DE 4 XLM-R .93
Wang et al. (2021) WNUT-17 EN 6 BERT+CRF .61

Domain-specific NER Liu et al. (2021) CrossNER EN 9 BERT .73
Ushio et al. (2022) TweetNER EN 7 RoBERTa .67
Chen et al. (2022) HarveyNER EN 4 BERT .70
Kumar & Starly (2022) FabNER EN 12 BiLSTM+CRF .88

6Different disciplines refer differently to these kinds of labels, for example as “ground-truth” or “gold-standard” We acknowledge that 
these names carry connotations that not everyone accepts. In the following, we refer to human annotations as “clean labels” or 
“manual labels.”
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of 0.789 on the CoNLL-2003 dataset. (Lison et al., 2020) follow a different strategy and aggregate labels 
from multiple weak annotators, such as semantic rules (e.g., matching person names from a database). 
In a second step, they use a hidden Markov model to derive final labels. They achieve an F1-score of 
0.754 on the CoNLL-2003 dataset. In a later publication, they publish a Python-library, called skweak, 
for WSL that supports their approach (Lison et al., 2021). We used skweak for weak annotation for the 
present study. However, we did not make use of the hidden Markov model and relied on a simple 
majority vote to derive the final weak labels.

(Zhu et al., 2023) show that most approaches to tackle label noise in WSL are significantly 
overestimated. Their core argument is that most of these approaches require clean validation data 
to find the right set of hyperparameters. However, when using this clean data for model training 
instead of for the respective method to reduce label noise, they achieve competitive or even better 
results. They show, for example, that for OntoNotes, they require only 400 sentences with clean labels 
in order to outperform the approach by (Yu et al., 2021). In further experiments, they show that 
Continuous Fine-Tuning (CFT), i.e., first fine-tuning on weak labels and then on clean labels, does not 
only improve over simple fine-tuning on clean data but also over most sophisticated methods for WSL. 
For the present study, we therefore do not use the previously discussed methods but rely on CFT.

WSL comes with obstacles that require consideration. One major danger is that the model fails to 
generalize and memorize instead. By generalization, we mean that the model learns the common 
patterns in the task and discards irrelevant noise and outliers (Tänzer et al., 2022). Memorization 
means that the model does not learn the common patterns but rather the individual entity names and 
class labels that are provided in the dataset. For WSL, this is particularly damaging because we already 
have a set of weak annotators that can do that. In other words, in order for WSL to be successful, 
models need to generalize. Otherwise, we can simply use the weak annotators.

(Tänzer et al., 2022) perform an in-depth study of memorization vs. generalization for pre-trained 
language models like BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). They identify three 
phases during the model training with noisy NER datasets. For the first few epochs, the model generalizes 
well and the performance increases on both, training and validation data. The next few epochs form 
a settling phase during which neither training nor validation performance changes. During the last 
epochs, however, the performance on the training data increases, while the performance on the valida-
tion data decreases. They show that this is because the model fails to find a pattern among the noisy labels 
in the training data, and it starts memorizing instead. This can inform the present study: While training 
with noisy labels is beneficial even on clean labels for the first few epochs of the training process, it can be 
damaging during later stages of the training. Accordingly, we can identify the “sweet spot” and interrupt 
the training at the right time. Additionally, the study by (Tänzer et al., 2022) is a reminder why it needs 
clean validation data: Strong performance on noisy data is not a reliable indicator for a good model.

Data & annotation

Database of public speakers (DBoeS)

The database of public speakers (DBoeS) lists actors that contribute to the German social public and is 
provided and regularly updated by (Schmidt et al., 2023).7 The DBoES comprises three overarching 
categories: media, organizations, and persons, which are each divided into further sub-categories. For 
more information on how individual entities were sampled, see the DBoeS-documentation. The 
database lists names of, for example, politicians, their social media profiles, and further information 
like gender or party affiliation.

For our purposes, the database is divided into five categories: media, authorities, parties, politicians, 
and journalists (see Table 2). This division is motivated by two thoughts. On the one side, we aim for as 
many categories as possible, in order to build a NER-model that operates on a high level of detail. The 
most fine-grained classes that are provided by (Schmidt et al., 2023) are newspaper, public broadcast, 

7https://github.com/Leibniz-HBI/DBoeS-data/tree/main
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news program, entertainment program, online only, news agency, party, authority, journalist, and 
politician. However, at the same time, we take into consideration that each category must receive 
a sufficient number of individual entities and that the categories should not be too similar 
(e.g., newspaper and news agency). We therefore keep the sub-categories of media as one class.

Weak annotation

For the present study, weak annotation is mostly performed by matching the names that are provided 
by the DBoeS database with data from German newspapers and Wikipedia articles. We use only a few 
additional rules: 1) we automatically add the German Genitiv-form to the words, 2) We allow 
compound words in the form of “Party-X,” e.g., “SPD-faction” and manually evaluate if the compound 
denotes a party or politician, 3) we add often used synonyms for German parties 
(e.g., “Sozialdemokraten” for “SPD” or “Liberale” for “FDP”), 4) We manually add job descriptions 
for politicians (e.g., “member of the parliament” or “minister”), 5) We allow surnames to be matched 
without first names if the full name was already mentioned in the same document (e.g., “Scholz” if 
“Olaf Scholz” was already mentioned). These rules, together with the entity matching, are referred to 
as “weak annotators” and are not only used for weak annotation but also as baseline for our models.

For the weakly annotated data, we use two data sources: German newspaper articles 
(total = 267,786) and German Wikipedia articles (total = 4,348). For the newspaper articles, we scrape 
all newspapers that are mentioned in the DBoeS database and that are available online between the 
25th of September and the 25th of October 2023. We do not scrape articles behind a paywall. For the 
Wikipedia articles, we scrape all available pages for the DBoeS entities. We assume that due to this 
even rare entity-instances, like lesser-known politicians, occur in the data.

The scraping process resulted in a dataset of about 8.5 million sentences. We sample a subset of 
about 40,000 sentences for the training process. The sampling is led by the aim to achieve a more 
balanced class-distribution. However, because we include surrounding words for each sentence 
(see Methods-section) and because of the irregular occurrence of entities in single sentences, we do 
not achieve a perfect class-distribution for the subset. Nevertheless, the least frequent class, journalist, 
is now closer to the other classes. Figure 2 displays details on the class-distribution. It also shows the 
token-count for each entity-class. Tokens for journalists and politicians are mostly first- and surname 
or only surname. German words for authorities can be relatively long (see Figure 1), while tokens for 
parties are usually only one word.

Table 3 displays the token diversity, i.e., the number of unique tokens per entity class. As expected, 
politician has by far the highest diversity, as it consists mostly of individual names. It is followed by 
journalist, media, and authority, while party has the lowest diversity. Again, this is not surprising 
because there are only a small number of parties and their names tend to be repeated frequently.

Manual annotation

In order to evaluate the models in different scenarios, we manually annotated data from different 
sources. The annotation was performed by the author and one student assistant.8 The coding- 

Table 2. Entity distribution and description of the per taxonomy that is based on the database of public speakers.

Class Number Percentage Description

Media 2169 30.3 Newspapers, Public/Private Broadcast (news and entertainment), News agency.
Authority 379 5.3 Authorities on national and federal level.
Party 359 5.0 Parties on national and federal level including their youth wings.
Politician 2811 39.2 Members of the German parliament, the federal parliaments, the EU parliament and members 

of the German government.
Journalist 1451 20.2 Journalists from the federal press conference and other data bases.

8Paid according to collective agreement of Berlin for student employees.
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instructions are derived from the DBoeS-documentation by (Schmidt et al., 2023). The annotators 
reached an F1-score of .85 on a set of 250 sentences.9 Afterward, each annotator received their own set 
of sentences for annotations. Disagreements between annotators followed some patterns. On the one 
side, there were “common” mistakes like overlooking an entity. However, a recurring disagreement 

Figure 1. Example sentences in different languages for public entity recognition.

Figure 2. Entity counts and tokens per entity for the weakly annotated data. Left: entire population scraped from newspapers and 
wikipedia articles. Right: smaller sample that is used for our experiments.

9See the section on evaluation metrics.
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was on whether the country specification of a party mention should be included or not 
(e.g., “CDU Deutschlands”/“German CDU”). It was decided to include it. Another disagreement 
was the splitting of compound descriptions, e.g., “Sachsen-Anhalts Wirtschaftsminister und CDU- 
Chef Sven Schulze”/“Saxony-Anhalt’s Economics Minister and CDU leader Sven Schulze.” It was 
decided to code this as one rather than as two entities.

The data was chosen according to different criteria (see Table 4). For the in-domain dataset, we 
chose data from roughly the same period as for the weakly labeled data. For out-of-domain data, we 
chose data from the first years of this century and from news articles on the “Spiegel-affair”10 during 
the 1960s. For both datasets, we took documents from major German newspapers (e.g., Spiegel, taz, or 
Süddeutsche Zeitung), governmental websites (e.g., the self-descriptions of German ministries), and 
documents for political education.11 We expect that, for example, all or at least most politicians 
mentioned in the out-of-domain data do not occur in the DBoeS-data.

In order to test performance on a different media format, we also sampled Tweets from the last 
national election in 2021. We chose the data of the election, as well as the day before and after and 
sampled tweets with the most frequent topic-related hashtags.12 Finally, we test how they perform for 
different languages, as well. We chose English and Spanish. For the English dataset, we sampled news 
articles from the Guardian. One article for each of the last three prime ministers13 and additionally, we 
annotated the English Wikipedia article on the attack on the US-Capitol in January 2021. For the 
Spanish dataset, we sampled newspaper articles from El País on the recent national election in Spain. 
We also added the Spanish Wikipedia article on the Catalan independence referendum in 2017.

As we deal with naturally occurring texts, we had little influence on the entity distribution, except 
for the choice of thematic. While the in-domain dataset is relatively balanced, for the other datasets at 
least one class is either much more frequent or very rare topics (see Figure A1 in Appendix). Assuming 
that party is rather easy to classify, we expect that the results on the Twitter data give us only 
a distorted picture. In other words, we expect the models to perform strongly on Twitter because 
a good performance on party is already sufficient for it. However, the imbalanced class-distribution is 
not necessarily a distortion of the real distribution. For example, journalist occurs only rarely in almost 

Table 3. Entity distribution and other statistics for the weakly annotated sample used for our 
experiments.

Entity Class Total number of Tokens Unique Tokens Diversity (%)

Politician 39,881 8,501 21.3
Journalist 9,480 654 6.9
Media 17,149 1,054 6.15
Authority 15,916 494 3.1
Party 32,350 932 2.88

Table 4. Size and description of manually annotated datasets.

Dataset Sentences Description

In-domain 3090 Roughly same time period and similar topics as weak sample.
Out-of-domain 558 Agenda 2010 (beginning 21st century) and Spiegel-affair (1960s).
Twitter 567 German national election 2021.
English 224 British Prime ministers and attack on US-Capitol.
Spanish 344 Spanish national election 2023 and Catalan independence referendum.

10https://en.wikipedia.org/wiki/Spiegel_affair
11E.g., https://www.deutschland.de/de/topic/kultur/kommunikation-medien/die-zeitungen-im-medienland-deutschland
12“btw21,” “AfD,” “Laschet,” “CDU,” “Habeck,” “Jamaika,” “Grüne,” “SPD,” “Bundestagswahl,” “Bundestagswahl21,” “wahl2021,” 

“btw2021,” “Scholz,” “FDP,” “btw21,” “btw2021,” “Baerbock.”
13Boris Johnson, Liz Truss, and Rishi Sunak.
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all datasets and this makes sense, given that journalists are usually the ones who write articles and are 
not mentioned by articles.

Method

Baselines and bootstrapping weak labels

We apply three strategies for predicting labels. The first are the weak annotators, i.e., rule-based 
matching of names from the DBoeS data as described in the previous section. We use this as a baseline 
and also refer to it in the following as such. One of the main questions of this study is if we can train 
a model that is better in identifying public entities than simple matching. This question will be 
answered by comparing our models to the baseline. The second strategy is simple fine-tuning, i.e., 
using a pre-trained model (see next section for details) and fine-tune it on the in-domain dataset. We 
refer to this approach as FTc, whereas the “c” indicates that no weak but only clean labels are used for 
training. Comparing our approach to FTc indicates if training on weakly annotated data improves the 
performance. Finally, we apply the approach that was suggested by (Zhu et al., 2023): Continuous 
Fine-tuning (CFT). In a first step, a model is trained on the weakly labeled data. We refer to this as 
FTw. In a second step, the model is fine-tuned a second time but this time on the clean in-domain 
dataset.

We further use a bootstrapping approach to increase the label quality of the weakly labeled data. 
Because CFT is able to detect new entities that were not identified by the weak annotators, we use the 
model to re-annotate the weakly labeled dataset. The process consists of the following steps: 1) split the 
weakly annotated data into training and test set using 5-fold cross-validation (which results in an 80:20 
split), 2) train the model on the training set, 3) further fine-tune on in-domain data, 4) use the CFT 
model for inference on the weakly annotated data, 5) repeat this for all five folds, 6) locate the 
mismatches between the CFT predictions and the weak annotations, 7) manually14 inspect the 
mismatches and find the correct entities that were not found by the weak annotators but by CFT, 8) 
replace the old labels by the new labels. This process is repeated several times. We refer to each as an 
iteration. Iteration 0 denotes the original weakly labeled dataset for which we only use the weak- 
annotators. Iteration 4 is special because we do not apply the bootstrapping method to the previously 
described sample of about 40,000 sentences but to a new sample of unlabeled data. This data comes 
from the same newspaper corpus from before but between the 25th of October 2023 and 25th of 
November 2023. This sample is much larger and consists of about 200,000 sentences each containing 
at least five entities. For iteration 4 we first fine-tune on this large sample and then again on the smaller 
sample of 40,000 sentences.

Model architecture and hyperparameter settings

For our experiments, we use XLM-R (Conneau et al., 2020) in its Base and Large version. XLM-R is 
a multilingual pre-trained transformer for 100 languages. It is therefore applicable to German text but 
also to text from other languages. We choose this architecture on the one side because of its 
applicability across languages and on the other side because it is well tested for applications in 
computational social sciences (Kroon et al., 2023; Laurer et al., 2024) and in the domain of NER. 
(Schweter & Akbik, 2021) use this model for their NER experiments for German, and we take over 
some of their hyperparameter settings. We choose a learning rate of 5e-6 and the “Reduce learning rate 
on plateau”-scheduler as it is implemented in Pytorch. This scheduler reduces the learning rate when 
a chosen metric, F1 in our case, stops improving.15 (Schweter & Akbik, 2021) use a batch size of 4. 

14Manual inspection was conducted by the author.
15Note that (Schweter & Akbik, 2021) use “One-cycle LR” as scheduler in their publication but “Reduce learning rate on plateau” in the 

current implementation of the Flair-library: https://github.com/flairNLP/flair/blob/master/flair/trainers/language_model_trainer.py 
(accessed 7th Dec. 2023).
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However, we notice that a batch size of 8 speeds up training and has no impact on performance. 
Furthermore, while (Schweter & Akbik, 2021) train for 20 epochs, we only train for 5 epochs on the 
weak labels because our dataset is much larger and the performance stopped improving for more 
epochs. For FTc and CFT, we train for 15 epochs. Finally, we take over their approach to include 
a context-window of 64 words to the left and right of a sentence. In other words, each individual 
training/test example consists of a sentence and its 128 surrounding words (we keep referring to it as 
a sentence).

Labeling scheme & evaluation metrics

We use BIO-tagging for the annotation as it is standard in NER. B-XXX is assigned to the first token of 
an entity, I-XXX is the label for subsequent tokens of the same entity, and O is assigned to all tokens 
that do not correspond to an entity. We assume that entities are non-overlapping. We evaluate the 
mismatch between the prediction and the correct label on the BIO-level. In other words, for a correct 
prediction, the model must not only predict the correct entity class but also the correct BIO-label.

Performance is measured in (weighted) precision, recall and F1 and in accordance to the standards 
set by the CoNLL task. We use the sequeval-library for computing all scores.16 Precision is understood 
as the ratio of true positives (TP) and the sum of TP and false positives (FP). Recall is understood as the 
ratio of TP and the sum of false negatives (FN) and TP. F1 is understood as the harmonic mean of 
precision and recall. Recall indicates if the model finds all relevant entities, precision indicates that the 
model is more careful in its predictions, and F1 indicates a balanced relation between precision and 
recall. All reported results are averaged over 5-fold cross-validation with the exception of the experi-
ments on language adaptation, for which we used train-test-splits with different random seeds.

Testing memorization

As mentioned before, one danger of weak supervision is that the model memorizes rather than 
generalizes. Following (Tänzer et al., 2022), we speak of generalization if the model learns the common 
patterns in the task and discards irrelevant noise and outliers. In contrast, memorization means that 
the model does not learn the common patterns but rather the individual entity names and class labels 
that are provided in the dataset. We assume that the weak labels are relatively noisy compared to 
manual labels. Label noise is likely to obscure the class-specific patterns that the model is supposed to 
learn and accordingly, the chance of memorizing is increased.

Memorization can be understood as a prediction for a token for which the most important token is 
the given token itself. In order to measure the importance of each token in a sentence, we use 
Integrated Gradients (IG) (Sundararajan et al., 2017). IG is a method for attributing the prediction 
of a deep network to its input features. In our case, this means attributing the prediction of XLM-R to 
the individual tokens of a given sentence. More formally, given an input vector x = (x1, . . . ,xn), IG 
assigns an attribution score a = (a1, . . . an) to the vector x, whereas each element of a indicates how 
strong the corresponding element in x contributed to the prediction. We define a memorized predic-
tion as a prediction for xi in which aj is the highest attribution score and i=j. In other words, the token 
itself was most important for the prediction of its label.

In order to test memorization, we create an artificial version of a subset of the weakly labeled 
dataset. More concretely, we sample a subset of 15,000 examples of the weakly labeled dataset. In 
a second step, we assign random labels to the entities. For example, the two tokens “Olaf” and 
“Scholz,” which is originally labeled as B-Politician and I-Politician become B-Media, B-Authority or 
B-Party, and I-Party. The only constant for this random labeling scheme is that identical tokens receive 
identical labels, e.g., if “Scholz” is labeled as B-Media all instances of “Scholz” are labeled as B-Media. 
With this approach we create a dataset on which a model can only perform well if it memorizes. In 

16https://huggingface.co/spaces/evaluate-metric/seqeval
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total, we create five versions of this dataset for which we shuffle 0%, 70%, 80%, 90%, or 100% of the 
labels randomly.

Our hypothesis for this experiment is that memorization is stronger for the random datasets than 
for the dataset with 0% random shuffling. This would indicate that the model memorized less on the 
original dataset and rather generalized. We measure three variables: 1) The F1-score of a model that is 
trained on the different versions of the dataset, 2) the number of entities for whose classification the 
token itself had the strongest attribution score, and 3) the average strength of this attribution score. 
We assume that a) the F1-score decreases with increasing shuffling, b) the number of predictions for 
which the token itself is most important increases with increasing shuffling, and c) that the average 
attribution score for these memorized predictions increases with increasing shuffling.

Results

Weakly supervised training

Figure 3 displays the training curve for FTw
17 for the first iteration on the weakly labeled dataset and 

the performance on the manually labeled test datasets. The performance on the weakly labeled hold- 
out is much higher than that on the manually labeled datasets. As assumed, the performance on 
Twitter data is strongest and followed by in-domain data. However, it is noteworthy that all curves 
follow roughly the same pattern. As (Tänzer et al., 2022) observed, models tend to overfit on noisy 
data, which leads to decreased performance on the manually annotated datasets. This did not happen 
in this case. Increased performance on the weakly labeled data did not happen at the expense 
performance on the clean data. Nevertheless, a trade-off between recall and precision is clearly visible. 
Throughout the training, recall on all datasets is higher than precision and has less variance across 
datasets than precision.

Figure 3. Training curve for XLM-R base on weakly annotated data (FTw) for iteration 0. Evaluation on weak test data and clean 
datasets was performed ten times each epoch.

17In our discussion, we focus on the base model even though the large model performed stronger throughout. However, because the 
base model requires less computational resources, we assume that it can be applied easier.
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Figure 4 displays the maximum scores on each of the test datasets for FTw for the first iteration. The 
transparent bars display the scores of the weak annotation baseline. As the baseline and the weak 
annotations are one and the same, the score is 1 for the weakly labeled test dataset. For all other 
datasets, FTw beats the weak baseline in terms of F1. For the English and Spanish data, this is the most 
obvious as the weak baseline fails to detect any entity. For the data from Twitter, the model performs 
strongest but also the baseline does better than on the other manually labeled datasets. This is most 
likely due to the high frequency of Party, which is a category that is relatively easy to learn for FTw but 
also relatively easy to match with a rule-based approach.

It is noteworthy that the baseline is superior on all German datasets with regard to precision but not 
with regard to recall. In other words, XLM-R learns new entities even though it is trained only on the 
weakly labeled entities and it tends to find more entities than there are, i.e., it has a high false positive 
rate. This motivates our bootstrapping approach. As the model learns more entities than the baseline 
identifies, we can use it to find more entities and re-label our dataset.

The detailed scores for FTw for all iterations can be found in Table 5. With the exception of iteration 
2, all iterations have a positive effect on the performance. Since iteration 2 does not lead to improved 

Figure 4. Best scores of FTw base on iteration 0. Transparent bars represent the baseline of weak annotators.

Table 5. Overview on (weighted) F1, recall, and precision of FTw for all iterations. ID = In-domain, OD = out-of-domain, tw = twitter, 
en = English, and sp = Spanish.

F1 Recall Precision

Model Iteration ID OD Tw En Sp ID OD Tw En Sp ID OD Tw En Sp

FTw Base 0 .54 .52 .68 .25 .46 .72 .73 .84 .50 .65 .45 .41 .60 .17 .38
1 .60 .62 .74 .46 .48 .63 .68 .80 .59 .57 .59 .58 .71 .40 .47
2 .41 .47 .66 .35 .21 .40 .51 .72 .47 .23 .45 .47 .65 .33 .24
3 .62 .66 .74 .50 .50 .63 .69 .79 .55 .56 .63 .64 .72 .47 .52
4 .69 .71 .78 .55 .55 .68 .76 .84 .66 .55 .69 .66 .75 .49 .54

FTw Large 0 .52 .51 .69 .23 .43 .72 .76 .82 .54 .63 .43 .41 .60 .15 .32
1 .56 .61 .76 .49 .47 .62 .69 .80 .59 .57 .53 .60 .73 .42 .41
2 .40 .49 .70 .41 .25 .40 .54 .72 .45 .24 .43 .47 .68 .43 .27
3 .63 .64 .76 .56 .52 .63 .72 .80 .60 .56 .63 .66 .74 .55 .49
4 .68 .63 .79 .56 .53 .68 .72 .82 .69 .59 .69 .56 .78 .50 .49

Baseline - .48 .37 .61 .0 .0 .36 .24 .47 .0 .0 .73 .79 .88 .0 .0
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results, we adapt our strategy for iteration 3. Instead of using only XLM-R Base for re-labeling, we add 
predictions of XLM-R Large and take the average over the predicted probabilities. For iteration 4, we 
use a larger dataset (as described in the previous section). We can make two observations. Firstly, with 
the exception of iteration 3, all iterations lead to better F1 and recall scores than the baseline. The 
improvement in F1 over the course of all iterations is mostly due to improved precision. This means 
that the models improve mainly by being more careful in their predictions, while still identifying more 
entities than the baseline.

Continuous fine-tuning

We use Continuous fine-tuning (CFT) to further improve the model performance. Note that CFT is 
only performed on in-domain data. No other clean dataset is used for training but only for evaluation. 
Nevertheless, CFT leads to a strong increase in performance not only on in-domain data but on all 
other datasets, too (see Figure A2 in the Appendix). The exact results for CFT can be found in Table 6. 
The highest scores are achieved by CFT with XLM-Large. It reaches an F1-score of .82 on the in- 
domain data and Twitter, .79 on out-of-domain data and .62 and .61 on the English and Spanish data, 
respectively. While the best scores regarding recall are also achieved by XLM-R Large, the best scores 
regarding precision are more scattered across the different experiments. This indicates that in some 
cases higher recall is only achieved at the expense of precision. While XLM-R Large performs stronger 
throughout all experiments, XLM-R Base is often only a few points behind.

We also test fine-tuning only on clean data without prior fine-tuning on weak data and refer to it as 
FTc. Prior fine-tuning leads to an improved performance in all scenarios (Figure A2 in the Appendix). 
CFT achieves a better F1-score on all datasets compared to FTc. In fact, in some scenarios even FTw 
achieved stronger results than FTc. This effect is especially visible for datasets of domains that are more 
distant to in-domain, like Twitter and the non-German datasets. This suggests that the previous fine- 
tuning step on weakly labeled data is especially helpful when it comes to domain adaptation. This is 
also indicated by recall and precision for FTc. Recall is weaker than precision, this means that for FTc 
the difficulty is rather to find the previously unseen entities and not so much that its classification is 
not sufficiently careful. Finally, we can observe that with exception of iteration 2, the improvement of 
CFT over FTw decreases in later iterations. This indicates that the increased accuracy of the weak labels 
decreases the gain from training on clean labels.

With respect to the individual entity-classes, we can make three observations (Figure A3 in 
the Appendix): 1) The correct predictions outnumber the false predictions by far. However, this 

Table 6. Overview on (weighted) F1, recall, and precision of continuously fine-tuned XLM-R (CFT) for all iterations. FTc is XLM-R fine- 
tuned only on clean data but not on weak data. ID = In-domain, OD = out-of-domain, tw = twitter, en = English, and sp = Spanish. 
Highlighted values indicate highest score for the respective dataset.

F1 Recall Precision

Model Iteration ID OD Tw En Sp ID OD Tw En Sp ID OD Tw En Sp

CFT Base 0 .77 .72 .72 .49 .59 .75 .73 .72 .55 .62 .82 .75 .78 .48 .61
1 .77 .73 .76 .51 .53 .74 .73 .76 .53 .52 .82 .75 .81 .54 .56
2 .76 .73 .76 .53 .51 .73 .73 .79 .57 .51 .82 .75 .78 .53 .54
3 .78 .75 .77 .54 .57 .75 .74 .80 .56 .59 .82 .77 .80 .56 .63
4 .80 .75 .80 .56 .61 .78 .78 .84 .64 .67 .84 .74 .79 .53 .61

CFT Large 0 .79 .76 .75 .54 .63 .76 .77 .76 .60 .60 .83 .77 .78 .51 .67
1 .78 .77 .78 .57 .60 .75 .77 .78 .59 .60 .83 .78 .81 .60 .63
2 .79 .77 .75 .59 .59 .75 .77 .75 .63 .59 .84 .81 .78 .59 .63
3 .79 .78 .79 .60 .62 .76 .78 .82 .66 .62 .84 .79 .79 .57 .64
4 .82 .79 .82 .62 .61 .80 .80 .84 .73 .66 .85 .78 .82 .57 .60

FTc Base - .73 .69 .68 .45 .52 .71 .69 .70 .43 .49 .81 .77 .72 .54 .63
FTc Large - .75 .72 .70 .48 .60 .73 .71 .69 .51 .61 .82 .78 .71 .53 .66
Baseline - .48 .37 .61 .0 .0 .36 .24 .47 .0 .0 .73 .79 .88 .0 .0
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was already clear from the scores. 2) The major source of confusion is between entities and non- 
entities (“O”). This goes in both directions: false positives but also false negatives. This is 
reflected by the scores, as well. Precision and recall do not differ by much. 3) The main source 
of confusion between individual entity classes is between politician and party on the one side 
and media and journalist on the other. This is surprising as we assumed that politician and 
journalist would be a main source of confusion as both mostly consist of personal names. 
However, it seems that the model rather confuses frequently co-occurring entity categories. 
Often documents or paragraphs that mention politicians also mention parties and the same is 
true for journalists and media.

The strongest classes for all XLM-R versions regarding F1 and for in-domain and out-of-domain 
are politician and party (Table A1 in the Appendix). While this was expected for party, it was not so 
clear for politician. Party comes with many entities, few unique entities, and a low number of tokens 
per individual entity. For politician the number of entities is also high but so is the number of unique 
entities. And while the former should have a positive effect on the results, the latter is expected to have 
a negative impact. The weakest class for in-domain and out-of-domain is authority. This is true for all 
versions of XLM-R but not for the baseline. While XLM-R outperformed the baseline with regard to all 
categories, authority is not the weakest category among the baseline results. This can be an indicator 
that XLM-R struggled with entities that have a high number of tokens (as it is typical for authorities), 
while rule-based matching is less affected of it.

For Twitter, the performance of CFT and FTc shows different patterns. The strongest categories are 
politician, party, and media but FTc did much worse on media than CFT. For English, it is again 
politician and party for which the models performed strongest and, for Spanish, the performance on all 
classes with the exception of authority is relatively balanced. This is partly due to the datasets because 
Spanish is much more balanced than English or Twitter. However, often the strongest class for Spanish is 
journalist. This is not representative as there are only three occurrences of this class in the entire dataset.

Qualitative error analysis

There are some common error types for individual datasets but also across datasets. One common 
misclassification is that of noun markers for media and parties, e.g., die Grünen (the Greens) or der 
Spiegel (the Spiegel). While the model correctly classifies the name of the party or newspaper, it often 
fails to classify the article in front of the name correctly. Another source of errors are personal names 
that do not denote journalists or politicians but other types of persons. Often the model falsely 
classifies these names as belonging to one of the two categories. Ambivalent entities are also difficult 
for the model. For example, “Grüne” can denote the Green-party but also a politician from the Green- 
party. In some cases, the model does not find the correct class for the particular context. As mentioned 
before, frequently co-occurring entities are mixed up, too. “Stern” and “Spiegel Online,” which are 
German newspapers, are sometimes misclassified as Journalists. Another case of confusion due to 
co-occurrence is the classification of a city name as Politician. Often political job descriptions are 
preceded by a city or country as in “Bremer Bürgermeisterin” (mayor of Bremen) or “deutscher 
Bundeskanzler” (German chancellor). Some of the tokens that are classified as Politician by the model, 
are just mentions of a city or country without reference to any politician.

Finally, there are some specific sources of error to the datasets from other domains or languages. 
Little surprising, one major source of error are names of politicians that are not in the DBoeS data, 
such as Obama, Trump, or Willy Brandt. A similar source of error is political job descriptions in non- 
German, e.g., “president” instead of the German “Präsident.” As the training data is exclusively 
German, the model has problems handling non-German words. Also, some country-specific writing 
styles lead to errors. For example, the English Wikipedia article on the attack on the capitol often refers 
to a republican from North-Carolina as R-NC or to a Democrat from California as D-CA. These party 
abbreviations are often classified incorrectly.
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Memorization

The performance with 0% shuffling is by far the highest (Figure A4 in the Appendix). The model quickly 
increases its performance during the first epoch and then slowly increases the performance over the later 
epochs. For the shuffled datasets, the increase in performance is slower and evenly spread over the entire 
training procedure. For the shuffled data, the performance for the earlier epochs is negatively correlated 
with the percentage of shuffling, i.e., the performance is weaker for data with higher amounts of random 
labels. For the later epochs, the performance for the different levels of shuffling converges.

Our first assumption is partly confirmed, shuffling leads to decreased performance (Table A2 in the 
Appendix). However, contrary to our expectations, increased shuffling does not lead to decreased 
performance but even to slightly increased performance. Our second and third assumptions are 
confirmed for the experiments for 0%, 70%, and 80% of the shuffled labels: The share of memorized 
predictions on the total amount of predictions (slightly) increases with increased shuffling. However, if 
we look at the full picture, our hypothesis is not confirmed because for 90% and 100% shuffling the 
share of memorized predictions and the attribution scores decreases again.

Language & domain adaptation

The scope of this study is not only the German language and public context but is supposed to generalize 
across domains. Previous experiments show that even though the models are only trained on German 
language from a limited period of time, they are able to identify entities in other settings, too. However, for 
English and Spanish the F1-scores are a bit over .6 at best. This is not reliable enough for actually applying 
the model in these languages. Accordingly, we test how much data is necessary to improve the performance 
to a similar level as for in-domain. The results can be found in Figure 5. For these experiments we fine-tune 
CFT from iteration 4 repeatedly and each time with more sentences. We can make two observations.  
1) With about 100–150 sentences we can achieve a performance close to that on in-domain data. For 

Spanish, it needs 150 sentences to get an F1 of .8 and for English only 120 sentences.18 2) Precision is slightly 
higher than recall. This makes sense because almost all entities in this language are new for the model and 
the problem is rather identifying them all and less classifying too many entities.

We further asked if there are certain features of the data that are relevant for domain adaptation. As 
previously suggested, a large count of entities could be beneficial, while a large count of unique entities 
might have a negative impact on the performance. Moreover, entities that consist of many tokens 
might be more difficult to learn for a model. We test all these hypotheses. The results can be seen in 
Figure 6. The plots at the top display the results for the English dataset and the ones at the bottom for 
the Spanish dataset. We measure the number of entities per class, the number of unique entities per 
class, and the average token count per entity for all subsets of the training data that is used for Figure 5 
and compute the Pearson correlation with the F1-score. However, while in some cases the variables 
have a moderate influence on the performance of the models, in most cases the influence is only small. 
For the English data, the correlation is a bit higher than for the Spanish data, but this is likely due to the 
imbalanced class distribution of the dataset. In total, it seems as if the main lever to improve domain 
adaptation is to add sentences to the training data, while the count of entities, unique entities and 
tokens per entity have only a minor impact.

Gender bias

We test the performance of the models on in-domain data with regard to the gender of different 
entities.19 Of all politicians and journalists in the DBoeS database, 67% are male and 33% are female. It 
is therefore possible that the models perform better on male entities. For the German language and in 

18For XLM-R Large it needs 150 sentences for an F1 of .82 for Spanish and 140 sentences for .82 for English.
19Thanks to an anonymous reviewer for pointing this out.
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this context, gender is indicated by either the personal name20 (Thomas, Sabine) or how the profession 
is written (“Minister”/”Ministerin,” “Journalist”/”Journalistin”). For the in-domain dataset, female 
entities make up 30% and male entities 70%. Following (Mehrabi et al., 2020), we define three types of 
error. Due to the low frequency of journalist, we do not perform separate experiments for the two 
person-classes. Let x be a word of class journalist or politician and j*, p*, o* the predicted label 
journalist, politician, or non-tagged.

(1) Type-1 error: x ≠ j* and x ≠ p*
(2) Type-2 error: x ∉ {j*, p*}
(3) Type-3 error: x = o*

All error types are computed as frequencies in percentage over all x. Type-1 describes misclassifica-
tions, i.e., x received an incorrect label or was not tagged at all (“O”). Type-2 describes entities that 
denote persons but which are not predicted as persons, i.e., as either journalist or politician. Type-3 
denotes errors in which x is not tagged at all. The results can be found in Table 7.

For all three types, the error is slightly higher for female entities. For entities for which the gender 
was identified based on personal names, the error types are a bit higher for male names, and with 
regard to gender-specific versions of professions the error rate is much higher for the female-versions. 
The error is about the same for all three types. This is because the main source of errors is entities that 
qualify as journalist or politician but are not tagged at all by the model (“O”). We conclude that our 
models perform weaker on female entities that are referred to via their profession. In general, however, 
we observe only a small gender bias.

Figure 5. Test results of CFT (base) with an additional fine-tuning step on English/Spanish data. Each point on the x-axis represents 
a single training run with increasing amounts of sentences.

20We did not encounter gender-neutral names.
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Model compression via quantization

In the last round of our experiments, we test how quantization affects the performance of our models. 
Our aim is to make the models widely accessible and this includes scenarios with limited computing 
capacities (Trilling & Jonkman, 2018). Quantization is a model compression technique.21 In the 
standard setting, model parameters are represented in floating point 32 (FP32) format. For quantiza-
tion, the precision of the data format is decreased in order to reduce the model’s memory footprint. 
Possible representation formats are floating point 16 (FP16), integer 8 or 4 (INT8/INT4). In theory 
each compression step should cut in half the memory footprint of the previous step. In practice, this is 
often not achieved because not all weights and activations can be represented in a lower data format 
(Dettmers & Zettlemoyer, 2023; Dettmers et al., 2022).

Figure 6. Scatter plot of English (top) and Spanish (bottom) datasets and results on domain adaptation. Each point represents the 
F1-score and a) number of entities, b) unique entities, or c) average tokens per entity for one class of one of the training runs with 
increased number of sentences.

Table 7. Error types with regard to gender for XLM-R base, weakly fine-tuned and then fine-tuned again on in-domain data with 
5-fold cross-validation. The first columns display the count of male/female entities (word-level) when they are identified either by 
name, profession, or both. The remaining columns display the frequency in percentage of the respective error type with regard to 
gender.

Count Type-1 Type-2 Type-3

m f m f m f m f

Name 332 116 .08 .07 .08 .06 .08 .06
Profession 101 69 .1 .17 .1 .17 .1 .17
Both 433 185 .09 .11 .09 .1 .08 .1

21Note that model compression also leads to a decreased electricity usage, which in many cases leads to a reduced carbon footprint.
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One major drawback of quantization is that it can affect the model performance. But because this 
does not necessarily happen, it needs empirical testing. The results of these tests can be found in 
Table 8. The experiments on the hardware requirements are conducted on a Nvidia Tesla V100S-PCIE 
-32GB GPU with batch size of 16 and fixed sentence length of 256 tokens. We use the bitsandbytes- 
library as it is integrated in the transformers-library.22 While the reduction to FP16 had no impact on 
the performance, reducing to INT8 and INT4 had a negative effect.23 Furthermore, FP16 has the 
lowest vRAM requirements. This is what is most important for practical application. In most 
scenarios, memory only plays a role when loading Large Language Models (LLMs) and it does not 
matter for comparatively small models like RoBERTa or BERT. However, vRAM is often a bottleneck 
even for smaller models as it forces applications with less computing resources to reduce the batch size 
to a minimum.

Discussion

Public Entity Recognition (PER) is the task of identifying politicians, parties, authorities, media, and 
journalists on a token level. It can be used to pre-process large amounts of text data according to their 
relation to one or more of the categories, but it can also be applied to directly measure concepts, like 
individualization, that are relevant to political and communication research. In this paper, we showed 
that our models outperform key-word matching and are on the same level as other approaches to 
domain-specific NER. In particular, our best models reached an F1 score of around .8 on each dataset. 
In comparison, the rule-based baseline reached an F1-score of .37 to .61 on German datasets and failed 
completely on non-German texts. Results from other domain-specific NER range from .63–.88. Our 
model joins these ranks but it did not surpass the results that are typical for classical NER. In this area, 
scores are often higher than .9. However, it would be unrealistic to expect such results because 
domain-specific NER is a more challenging task than classical NER.

As it turned out, weak supervision without further fine-tuning on clean data is not sufficient to 
reach good results. Our models did not even reach an F1-score of .7 on in-domain data. Yet, the 
models outperformed the weak annotators already in the first iteration and without clean data. In 
other words, while not in absolute scores, relative to the baseline, weak supervision did a good job. 
This is also true when compared to simple fine-tuning, as FTw outperformed FTc at least on non- 
German texts. But for an application in practice, a score of less than .7 is certainly not sufficient and as 
previous work demonstrates, domain-specific NER can reach better results.

As suggested by (Zhu et al., 2023), continuous fine-tuning (CFT), i.e., first fine-tuning on 
a large amount of weakly labeled data and then fine-tuning on a small amount of manually 
annotated data, is a successful strategy. CFT outperformed FTc on all datasets, which shows that 
fine-tuning on weak data has a positive effect and was not neutralized by the second fine-tuning 

Table 8. Hardware requirements and F1-scores for XLM-R with different levels of datatype-precision (tests performed on nvidia tesla 
V100S-PCIE-32GB). Inference speed refers to processing a single sentence of 256 tokens.

Model Quant. Memory (MB) vRAM (MiB) Inference (ms) ID OD Tw En Sp

CFT Base FP32 1109.9 7824 .49 .79 .73 .80 .56 .59
FP16 554.9 4494 .50 .79 .73 .80 .56 .59
INT8 470.0 5098 4.26 .79 .73 .79 .56 .59
INT4 427.5 5942 1.21 .74 .68 .75 .51 .53

CFT Large FP32 2235.4 18488 .96 .80 .77 .79 .61 .59
FP16 1117.7 10478 .97 .80 .77 .79 .61 .59
INT8 815.7 11222 9.24 .0 .0 .12 .0 .0
INT4 664.7 13812 2.72 .79 .75 .80 .57 .60

22https://huggingface.co/blog/4bit-transformers-bitsandbytes
23Especially the performance of XLM-R Large in INT8 is decreased. We ran the experiments a second time to confirm the results, 

however, we are not able to tell if this is a bug in the bitsandbytes-library
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step. However, the most important contribution of CFT is not the increased scores on in-domain 
data. While the increased performance on in-domain data is certainly positive, the most relevant 
contribution of the fine-tuning step on weakly labeled data is that the models become more robust 
to domain- and language-shifts. Without being trained on non-German data, CFT Base reaches up 
to .56 on English texts and .61 on Spanish texts, which is an increase of .11 and .09, respectively, in 
comparison to FTc. Since FTw already outperformed FTc on non-German data in some situations, 
we attribute the increased robustness to language-shifts to the first fine-tuning step on weakly 
labeled data.

Previous work on domain-specific NER suggests that performance across different classes can vary 
strongly. For PER, this is true, as well. An additional factor that complicates general judgments about 
PER’s performance is that the performance differs for different datasets and even for different sizes of 
XLM-R. For in-domain data, predictions for authority are the weakest with a distance of up to .13 
(.11 for XLM-R Large) compared to the strongest class. The in-domain performance for the remaining 
classes is roughly even, with a slight lead of politician. For the other datasets, politician and party 
perform more or less reliable and for data from out-of-domain and Spanish, media also delivers a good 
performance (at least for XLM-R Base).

While class-specific performance varies regarding many factors, the main source of confusion is 
relatively stable across all experiments. The models’ misclassifications were usually not between 
different entity types but between entity and non-entity. Confusions between entity classes happened 
mostly between frequently co-occurring entities but, nevertheless, they were outnumbered by mis-
classifications between entities and non-entities.

We conclude that when applying PER in practice, it requires special attention to Authority. 
However, we expect that the predicted distribution among entity classes is close to the real distribu-
tion. Finally, for tasks, like measuring individualization, for which only Politician and Parties are 
relevant, the models deliver reliable performance.

We performed experiments on memorization using Integrated Gradients (IG) (Sundararajan et al.,  
2017). However, the experiments results were not conclusive. We expected the number of memorized 
predictions to increase proportionally with the amount of label noise. This was not the case. While the 
share of memorized predictions is larger for noisy labels, it does not correlate with the amount of 
noise. The same is true for the intensity of the attribution scores. However, it is clearly visible that 
random noise had a strongly negative impact on the F1-score. This indicates that there is some benefit 
to the non-shuffled labels. This is further suggested by the performance of FTw on datasets of other 
domains and languages. If the models simply memorized the weak labels, they would not be able to 
make correct predictions on previously unseen entities and languages. However, as the qualitative 
analysis revealed, some common patterns, like country + political profession (German chancellor), led 
the model to classify countries as politicians even in the wrong contexts. This can be interpreted as an 
indication that the model memorized very frequent co-occurrences rather than learning the under-
lying logic. We conclude, however, that while we could not show directly via IG that our models 
generalize rather than memorize, overall, the performance of the models suggest that they learned 
general patterns rather than purely memorizing entities.

For all our experiments, the models performed better on non-German texts than the baseline did. 
However, in absolute scores, the performance is not sufficient for the models to be applied across 
languages in practice. We therefore tested how many sentences are required to adapt the models to 
a new language. The results show that it takes about 100–150 sentences in order to reach similar 
performance as on German data. This (very) roughly corresponds to five or six mid-sized newspaper 
articles. We assume that this amount of manual coding is likely feasible even for projects with low 
resources. Identifying public entities in texts is a less ambivalent task than, for example, sentiment or 
stance detection. And this means that training coders requires less time. Moreover, as it turned out, 
number of entities, number of unique entities, and token count per entity have only a minor impact on 
the model performance. This means that it requires less scrutiny when selecting additional data for 
adaptation.
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The major limitation of our experiments is the class imbalance of the manually labeled datasets. As 
mentioned already, our results on the Twitter data are likely distorted as the entities consist mostly of 
party and this is the class, which is often the easiest for our models. The opposite is the case for 
journalist, as this class rarely occurs in all but in-domain data. These imbalances are a natural side- 
phenomenon to PER. There are masses of texts about politicians or parties but only a few mention 
journalists. Moreover, while a single text often makes references to politicians or parties multiple 
times, mentions of journalists are less frequently repeated. This means that for sampling sentences 
with journalists, it is necessary to find many different documents, whereas each contributes only little 
to the overall count.

Another limitation is the amount of manually labeled sentences. While we annotated more than 
3000 sentences of in-domain data, the other datasets consist of only a few hundred sentences. This was 
due to limited annotation resources and must not necessarily be a limitation. As it was shown, fine- 
tuning a model can already work with a couple of sentences. However, due to the limited annotation 
budget, we focused on texts on political topics. This means that we did not test the false positive rate on 
texts that most likely mention no public entities at all, like the sports-division of a newspaper. We 
therefore emphasize that our results might not be representative for documents with entity- 
distributions that are very different from ours.

The last limitation that we want to mention is the difficulties of training and evaluating models 
across languages. Evaluation on data from different languages usually has two aspects: On the one side, 
we test how the model performs with regard to different languages and on the other side, we test how 
the model performs with regard to different domains, as texts from different languages usually come 
from different nations and therefore with different topics and framing. In our experiments, we did not 
untangle these aspects and tested for language and domain adaptation simultaneously. One way to 
untangle these aspects is anchoring, i.e., using parallel corpora (see Licht & Lind, 2023). 
EU-documents, for example, are often translated to multiple languages while being about the same 
subject. However, evaluating language and domain adaptation individually for different national 
contexts requires more annotated data.

Conclusion

In this paper, we introduced a domain-specific NER model for the classification of public entities in 
documents. Our experiments show that the model does not only performs well on data similar to its 
training data but adapts across domains and languages. We further showed that it can be fine-tuned 
for custom use-cases with only small datasets and it can also be deployed in settings with limited 
computational resources.

Weak supervision had a very positive effect on the model performance, but it came with some 
practical difficulties. On the one side, it was challenging to make the DBoeS taxonomy work for all 
possible data sources. The taxonomy covers, for example, politicians with a seat in parliament. But 
how about political actors who are running for office? While it is probably less important whether to 
include them or not (we did) and more important to make a choice and stay coherent, this (and related 
problems) is an issue that might come up only during the ongoing annotation process and not before. 
Researchers should be aware of this and have the required flexibility. A similar issue occurred with 
regard to words for political professions (e.g., chancellor). This is not provided by the DBoeS, and it 
was difficult to come up with an exhaustive list and adjust them to the German grammar.24 On the 
other side, the bootstrapping approach was messy as it had to be handled manually. For each iteration 
the author had to manually check the model output. Due to the dataset size this was done using 
keywords and clustering, but it was not possible to inspect each output sentence individually. 
However, inspecting only the entities and not the context came with limitations. For names like 
“Baerbock” it was clear that most likely Annalena Baerbock – a politician – was meant. However, for 

24The additional entities are listed in the repository at DATA/01_UTIL/Extend.csv.
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surnames like “Müller,” which are very common in Germany, it was not possible to determine if, for 
example, Michael Müller, also a politician, was meant. While bootstrapping proved to be very effective, 
it was limited by these constraints and maybe even more important from a scientific perspective: it 
limits the reproducibility of this study.

With regard to the practical use of PER, one has to deal with the sometimes messy output of 
transformer model that is also highlighted by (Balluff et al., 2024). This might not be a problem if PER 
is used to classify entire documents rather than retrieving individual entities. However, in case of the 
latter, harmonizing different variations of the same entity can be tedious. One strategy is to aggregate 
the results, manually search for common patterns, and filter with regular expression. Another option is 
to use tools like OpenRefine25 or reconciler26 that access the WikiData API. Reconciler, for example, 
can handle “Baerbock,” “Annalena_Baerbock,” “Baerbock_,” and “Annalena_Baerbock_,” and makes 
it possible to link all occurrences to Annalena Baerbock.27 Nevertheless, this method comes with 
limitations. For instance, “Außenministerin Baerbock” was not identified. Furthermore, because 
a country-specific WikiData API has to be chosen, multilingual content from different countries 
and contexts might complicate this procedure. A possible next step is to develop not only a recognition 
model for public entities but also a public entity linkage model.

Finally, and with regard to future research, we emphasize that research in communication and 
political science can benefit from a more fine-grained category system. For example, one could add 
the remaining types from the DBoeS dataset or add categories like political events, high-ranking 
employees of the public sector, or NGOs and civil society groups. As our experiments showed, weak 
supervision, bootstrapping better labels, and fine-tuning on small manually annotated datasets is an 
efficient way to reach reliable performance. It is likely that a comparable performance can be achieved 
with even more classes because the main source of confusion was between entities and non-entities and 
not so much between different entity-classes. This suggests that additional entity-classes might not have 
a negative effect on the performance. One difficulty, however, could be if new entity-classes frequently 
co-occur. For instance, adding high-ranking employees of the public sector to the classes could have 
a negative effect on Authority. We recommend basing an extended taxonomy on a well-grounded 
schema like the DBoeS. This allows to test and reflect on the best subset of entity classes and can already 
provide a list of individual instances of the respective entity, that can then be used for weak labeling.
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Appendix

Table A1. Class-specific (weighted) F1, recall, and precision of baseline of weak annotators and XLM-R fine-tuned on weak data only 
(FTw), clean data only (FTc), and continuous fine-tuning on weak and clean data (CFT) over all iterations.

F1 Recall Precision

ID OD Tw En Sp ID OD Tw En Sp ID OD Tw En Sp

CFT Base Politician .83 .80 .82 .70 .69 .80 .79 .84 .67 .69 .86 .80 .79 .74 .70
Party .82 .81 .86 .48 .73 .80 .80 .88 .42 .69 .85 .82 .84 .57 .79
Authority .70 .64 .40 .25 .39 .67 .71 .52 .41 .39 .73 .59 .34 .18 .39
Media .79 .68 .72 .27 .85 .79 .66 .68 .23 .86 .80 .70 .77 .33 .84
Journalist .79 .56 .55 .00 .86 .75 .48 .83 .00 .90 .84 .68 .41 .00 .86

CFT Large Politician .85 .83 .82 .75 .67 .83 .85 .83 .73 .69 .88 .82 .81 .79 .66
Party .82 .83 .88 .62 .73 .80 .81 .88 .77 .73 .84 .84 .88 .51 .73
Authority .74 .62 .36 .28 .40 .72 .80 1.0 .59 .47 .78 .52 .22 .19 .36
Media .80 .60 .73 .29 .86 .77 .68 .65 .26 .81 .83 .55 .84 .33 .92
Journalist .82 .63 .53 .00 .83 .80 .52 .73 .00 .72 .84 .82 .41 .00 1.0

Base-line Politician .48 .31 .26 .00 .00 .37 .19 .16 .00 .00 .67 .80 .76 .00 .00
Party .68 .68 .79 .00 .00 .58 .58 .72 .00 .00 .82 .82 .89 .00 .00
Authority .50 .36 .22 .00 .00 .39 .24 .14 .00 .00 .67 .73 .50 .00 .00
Media .25 .15 .36 .00 .00 .15 .09 .22 .00 .00 .80 .50 1.0 .00 .00
Journalist .22 .00 .00 .00 .00 .13 .00 .00 .00 .00 .66 .00 .00 .00 .00

FTc Base Politician .79 .73 .56 .56 .59 .74 .71 .67 .52 .53 .87 .85 .55 .72 .73
Party .76 .77 .84 .34 .64 .74 .76 .83 .26 .55 .80 .81 .87 .50 .79
Authority .56 .43 .70 .24 .30 .62 .59 1.0 .37 .28 .73 .40 .60 .18 .31
Media .73 .63 .57 .18 .76 .74 .63 .54 .14 .64 .79 .70 .67 .33 .97
Journalist .67 .49 .23 .00 .18 .65 .38 .14 .00 .15 .81 .67 .43 .00 .73

FTc Large Politician .81 .80 .56 .60 .66 .78 .79 .63 .60 .62 .86 .85 .51 .70 .79
Party .76 .79 .82 .47 .72 .73 .77 .80 .46 .68 .81 .84 .86 .48 .80
Authority .61 .46 .14 .26 .37 .57 .56 .80 .32 .36 .75 .45 .11 .20 .35
Media .74 .51 .71 .28 .87 .71 .54 .65 .25 .86 .79 .56 .80 .33 .89
Journalist .72 .48 .21 .00 .63 .68 .38 .20 .00 .45 .84 .77 .37 .0 1.0

Table A2. Statistics of model performance and attribution scores on datasets with different levels of label-noise.

Shuffled labels (%) Max F1 Memorized predictions (%) Avg. attribution score

0 0.9 39.05 0.49
70 0.67 40.55 0.51
80 0.67 43.39 0.52
90 0.68 42.48 0.51
100 0.69 40.79 0.50
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Figure A1. Entity distribution for manually annotated datasets.

Figure A2. F1-scores of fine-tuning XLM-R base on weak data only (FTw), clean data only (FTc), and continuous fine-tuning on weak 
and clean data (CFT) over all iterations. Numbers indicate the performance increase from FTw to CFT.
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Figure A3. Confusion matrices for CFT Base in iteration 4. “O” denotes tokens that did not fall into any of the entity-categories. We 
left the right upper corner of each matrix empty for better readability.

Figure A4. Training curve of XLM-R base fine-tuned on datasets with different levels of label-noise.

26 S. NENNO


	Abstract
	Introduction
	Related work
	Automated content analysis and named entity recognition (NER)
	Domain-specific NER
	Weakly supervised learning (WSL)

	Data & annotation
	Database of public speakers (DBoeS)
	Weak annotation
	Manual annotation

	Method
	Baselines and bootstrapping weak labels
	Model architecture and hyperparameter settings
	Labeling scheme & evaluation metrics
	Testing memorization

	Results
	Weakly supervised training
	Continuous fine-tuning
	Qualitative error analysis
	Memorization
	Language & domain adaptation
	Gender bias
	Model compression via quantization

	Discussion
	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributor
	ORCID
	References

