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ABSTRACT
Participation in data-driven projects is a popular approach and often
connected to the idea of more equitable projects. The lack, how-
ever, of an agreed definition of what constitutes participation leads
to fuzziness surrounding possible motivations for participation.
This in turn diminishes the ability of facilitators to communicate
what to expect from a participatory process to participants and the
public. To better understand this, we conduct a systematic litera-
ture review and analyse the claimed motivations for implementing
participation in data-driven projects. We find three overarching cat-
egories: value-, effectiveness-, and efficiency-focused motivations.
We discuss overlaps and issues within these categories, such as the
implications of project-internal demands (the realisation and work-
ing of a project) and project-external demands (codified demands
in frameworks, policies and rights).
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1 INTRODUCTION
Participation is a popular approach in many fields, and data-driven
projects are no exception. Including external participants is often
connected to the idea of better systems and producing fairer or
more equitable technologies [7, 14, 16]. At the same time, using
participatory approaches for public relations or exploitative rea-
sons is cautioned against [28], and the potential of participatory
approaches to disseminate power is critically examined [5]. Yet, it
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is often noted that there is no agreement on a definition of what
constitutes participation [5, 9]. Better knowledge of the variety of
reasons for participation can help facilitators to better design and
evaluate problem-oriented participatory processes, transparently
communicate towards participants and the public, and potentially
avoid participatory processes for their own sake. To understand
the motivations for participatory processes, we look at data-driven
projects with participatory elements from the academic literature
and analyse the motivations discussed. We understand participa-
tion for the purpose of this paper pragmatically—as the deliberate
inclusion of external parties in data-related aspects of a project.
Data-driven projects are understood here as projects that rely on
data for their functioning. We find three categories of motivations,
concentrated on values, effectiveness, and efficiency. Based on our
findings, we discuss overlaps between the categories and implica-
tions of the project’s internal and external interests and demands.

2 BACKGROUND
Participation in data-driven projects has been encouraged for some
time and can be found in political forms of participation e.g. since
the 1970s by workers regarding technologies used at the work-
place [8] as well as in citizen science approaches, which have been
around since the 1990s [22]. Sloane et al. [28] note that, for the
field of AI, participation is not necessarily a means to reach greater
justice, but also for simply consulting participants or using partici-
pation for work-related tasks. More recently, we see projects where
participation itself is a central goal, e.g. in data-driven projects
related to equity or self-determination [11, 32]. At the same time,
Groves et al. [17] collate factors that hinder the implementation
of public participation in commercial AI labs. Whilst AI and Ma-
chine Learning (ML) systems are a focal point of much current
research, we believe that there is value in looking more widely
at data-driven projects in general — to capture knowledge from
a broader variety of cases and to derive findings that apply to a
broader field of projects. Our main research question is: What does
the academic literature claim about why participatory processes are
implemented in data-driven projects? By analysing the motivation
of facilitators to implement participation, we aim to contribute to a
better understanding of the participatory processes involved and
the problems they are intended to solve.

3 METHOD
To identify data-driven projects with a participatory element, we
conducted a systematic literature review, following Kitchenham
and Charters [3]. We constructed two search strings. One combined
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participation-related attributes (e.g. participatory, deliberative, col-
laborative, fair, community, democratic) with modes of data han-
dling (data governance, data stewardship, data curation). The other
searched for normative modes of data handling (data stewardship,
data commons, data trust, data care), which potentially included
participation. We searched the ACM Digital Library, IEEE Xplore,
and Scopus on 20/09/2022 for matching titles and abstracts pub-
lished between 2012 and 2022. Our initial sample of 1,642 papers
was reduced to 21 papers, describing 27 cases. The sample reduction
was conducted as follows: removal of duplicates, unrelated titles,
as well as unrelated abstracts and finally the removal of unrelated
items based on full papers. Included were complete, peer-reviewed
papers, written in English, that described implemented cases of
data-driven projects which included a participatory element. We
identified the motivations for participation using a qualitative con-
tent analysis, coding passages in the papers indicating why a par-
ticipatory approach was included. In some cases, motivations are
named explicitly—in others implicitly. Furthermore, a project can
have more than one motivation.

4 RESULTS
Our 27 cases include projects that are collections of health data
for scientists [4, 13, 15, 18, 21, 25, 30, 31, 33], research projects [1,
2, 10, 23, 24, 26, 27], data-driven services and products (mapping
and encyclopedia-connected projects) [6, 19, 20], and data activism
initiatives [12, 34]. We find three types of motivation.

Motivations to encourage values. Motivations that encour-
age the implementation of values, such as trust and accountability,
are concentrated on the participants’ or the public’s needs and
wishes. Through their implementation, facilitators may increase
the legitimacy of their projects.

The motivation to evoke ‘trust’ in the project is frequently men-
tioned [13, 15, 25, 29, 31], which is anticipated to be higher if partic-
ipation takes place. Increasing or understanding the level of trust
towards a project is entangled with e.g. the expectation of greater
success for the project objective: “These mechanisms are useful for
understanding the public perceptions of using data to develop and
test algorithms, and the level of trust felt towards algorithms in clin-
ical care supporting the role of human readers.” [13]. Participatory
processes are thus a reaction to a known or anticipated mistrust;
the reason for this mistrust is therefore not necessarily an issue
in the perception of the facilitators, but in the perception of the
participants or other externals. In terms of accountability, this can
be difficult, if facilitators do not consciously address the danger of
obscuring responsibilities. Participation for increased accountability
is mentioned in connection to a jointly drafted Data Governance
Agreement (DGA): “Well-designed DGAs [...] support equitable
relationships by increasing both transparency and accountability
toward Indigenous partners.” [23]. Although the facilitators of a
data activism case ask themselves how to “[. . . ] make data and
decision-making more accessible and accountable?” [34] the topic
of accountability is mentioned seldom in the sample.

In several cases, the motivations can be understood as a means
to align aspects of a project with the interests and needs of a spe-
cific group other than the project facilitators. Those groups are
Indigenous communities [23, 27], patients [13, 15, 31], or—more

general—stakeholders/experts[25, 29]; in one case, the aim is to
align the project with the “public interest” [15]. With regards to
Indigenous communities and patients, authors point at the rights
of Indigenous people [27] and the control of patients’ own health
data:“[. . . ] participants are cast as a community that has interests
and entitlements in controlling its data.” [31].

Motivations to improve effectiveness. Motivations to im-
prove the effectiveness of projects via participation are focused on
how a project works. This is connected to the data, data handling
in terms of curation, and its implementation in terms of design —
as well as the work of the community of users, participants, or con-
tributors. This category is focused on the project in its realisation
and functions.

The motivation for including participants in the data collection
or data curation is connected to realising the project as such by the
contribution of labour, knowledge, or existing data. The motiva-
tion for participation in this context is to strengthen the general
purpose of the project, e.g. to make research in a specific domain
possible in the first place: "DPUK [Dementias Platform UK] was
established by the Medical Research Council (MRC) to accelerate
the development of new treatments for dementia." [4]. Several cases
intend to foster community interaction and collaboration amongst
participants who shall ideally work collaboratively or become an
integral part of the project [4, 20, 25, 30, 33]. This motivation occurs
frequently in research environments and is reflected in passages
like the following:“Finally, the Data Commons was designed as
a place for community interaction [. . . ]. Discussion forums en-
able a lively exchange of ideas and expertise, with users posting
questions and answers on a variety of technical, policy, and other
issues.” [20]. A further motivation is facilitators aiming to increase
the effectiveness of their project by gathering input from users to
alter the functionality/design of a project, so that it becomes of better
use:“These [four stages of development each] consist on performing
a requirement analysis (e.g., ask the community what data needs
to be shared), followed by a period of design and development of
tools and policies, and a period of feedback (testing) by the users
and the community.” [30]

Motivations to improve efficiency. Implementations of par-
ticipatory processes motivated by improving the efficiency of a
project are focused mainly on realising a project with fewer bur-
dens or resources. This category revolves around necessary but
resource-intensive aspects of the project.

Participation, especially regarding laborious tasks, is depicted
as a way to make a project run whilst keeping costs lower than
e.g. working with contractors or to help realising an underfunded
endeavour [6, 12, 20, 26]. Many of the projects in the sample do
not seem to have a business objective but rather aimed at a col-
lective interest: “Ideally, the Data Commons could productively
harness some of the community’s attention, directing a little ef-
fort from many participants toward collective tasks.” [20]. Besides
putting parts of the labour in many participants’ hands, prohib-
itive logistical burdens play a role in data collection in dispersed
areas. Overcoming these is a second motivation for participation.
Particularly in environmental research projects, this challenge is
solved through a participatory and distributed approach to the data
collection [1, 10, 26]: “Collaborative science was the best way to
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overcome the prohibitive logistical field and laboratory require-
ments associated with answering this question.” [1]. Finally, several
projects centralise data collections to be more efficient and share
infrastructure as well as technical knowledge [2, 18, 21, 26]. By doing
so, the facilitators aim to generally save costs. This includes allow-
ing organisational participants to partake that would not have the
financial resources to set up infrastructures themselves: “Our key
motivation for this approach was cost-effectiveness and efficiency
of the network: many OneFlorida partners did not have existing
research infrastructure on which to build an independent PCORnet
data mart.” [18]

5 DISCUSSION
In the following we discuss how these motivations are related to
each other as well as to the projects’ internal and external demands.

Intersections of value-, effectiveness-, and efficiency-driven
motivations. Value-, effectiveness-, and efficiency-oriented moti-
vations can be understood as high-level categories. They overlap,
and a project may have several motivations for applying participa-
tory approaches. This raises questions about the relations between
the categories and their role when coming together in one project.

Figure 1: Visualisation of the three overlapping motiva-
tions to implement participatory approaches in data-driven
projects. Each category entails examples from the cases.

Figure 1 shows that overlaps between the categories exist in at
least two points. One lies between value- and effectiveness-focused
motivations, e.g. in the federally-funded Pathways TB Project [23],
which is focused on writing data governance agreements together
with Indigenous communities for collecting, sharing, and storing
health data on tuberculosis outbreaks in a co-ownership approach.
One result of the process was improved usability of the data for the
Indigenous partners. The data format, which was hard to access
before, was now changed so the communities could make sense of
local outbreaks and provide additional countermeasures as well as
data [23]. Themotivationwas to realise Indigenous data sovereignty
and align the project with communities’ interests—a value-based
motivation—which in the same vein affects the effectiveness of the
project. Yet, aligning the participants and the project interests seems

crucial for this overlap. Further, we do not see a value-efficiency
overlap, which could point to a general conflict between both. This
raises the question of why a value-efficiency overlap does not occur.
A second area of overlap lies between effectiveness- and efficiency-
driven motivations, e.g. overcoming logistical burdens can support
both effectiveness and efficiency. An example is a bat monitor-
ing program [26] which coordinated data collection at dispersed
sampling sites. The collection of data by many professional and
lay participants in different locations made the project possible
in terms of the needed resources but also enabled the functioning
of the project in the first place. The variety of the sampling sites
strengthened its effectiveness. It is necessary to look further into
the interplay between different participatory approaches and how
to communicate more complex combinations of motivations—without
omitting e.g. resource benefits for facilitators or value-related ben-
efits of effectiveness-focused participation for participants.

Internal project demands and external participant inter-
ests. When contextualising the three high-level motivations, we
see that effectiveness- and efficiency-focused motivations evolve
out of project demands, which are challenges to realise a project in
the first place. This relates to how the project functions and how
facilitators deal with burdens to realise the project. Effectiveness-
and efficiency-focused motivations for participation can thus be
considered project-internal. Value-driven motivations, on the other
hand, seem to be concerned with either the interests of participants
and responsibilities towards the public or the external perception
of the project—which are all rather project-external factors. Whilst
the participant’s/public’s needs are in focus, a normative benefit
for the project is supposedly expected: public legitimisation. In
connection to value-driven participation, codified principles are
mentioned, e.g. the UNDRIP, OCAP® for first nations [23] or the
CARE principle [27]. Further, the legal ownership of data subjects of
their data [31] is mentioned. Similarly, value-focused participation
is used to counterbalance the lack of otherwise established modes
of legitimisation. In one case, participation regarding a data access
request protocol was implemented after health data was used with-
out consent, which was possible due to specific COVID-19-related
exceptions [13]. Participation was used here as a substitute for a
recognised practice to gain legitimacy. This raises the question of
the role codified principles play in the decisions to implement partici-
patory processes that are value-oriented. In comparison to the other
motivations, the implementation of value-focused participation
seems to benefit from external, codified, and enforced demands. It
is not as integral to the project as effectiveness and efficiency are.

Finally, it needs to be noted that we are talking about the imple-
mentation of participatory approaches on a predominantly volun-
tary basis. This raises the question of where the limits of partici-
pation as a means to answer internal and external demands are and
where other approaches are needed.

6 CONCLUSION
In this paper, we show that motivations for participation in data-
driven projects can be divided into three high-level, overlapping cat-
egories: value-, effectiveness-, and efficiency-oriented. Projects can
have more than one motivation for implementing participation. We
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find such overlaps between value- and effectiveness-driven motiva-
tions and between effectiveness- and efficiency-driven motivations.
We raise the question of overlaps that are not possible, potentially
between efficiency- and value-oriented participation. The overlaps
require a contextualised evaluation in implemented projects to
enable a transparent communication of the motivations towards
participants and the public. We point out that effectiveness- and
efficiency-related motivations seem closely connected to project
internal demands whilst value-oriented participation is often men-
tioned with references to external demands such as policies, rights,
or frameworks. Further research regarding the role of such codified
principles for facilitators to implement value-oriented participa-
tion is necessary to understand their potential to strengthen value-
oriented participation. Lastly, as we pointed out that participation
is not the only way to implement values in data-driven projects, it
seems imperative to look into when participation is not the right ap-
proach and what an interplay with other approaches can look like.
To deal with some of the questions raised, we intend to conduct in-
depth case studies of participatory data-driven projects, by looking
at the public communication, the interfaces for participation, and
conducting interviews with facilitators. We will further examine
the cases analysed in this paper by reviewing their openness to
participation such as the used participatory processes regarding
data governance and data handling.
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