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Abstract
Public health and infectious disease modelling is an area where interpretable artificial intelligent methods can have a profound
impact. We believe that probabilistic logic programming in Problog is ideal for transparent and verifiable epidemiological
modelling which is also adaptable in the face of an ongoing pandemic. As a proof of concept, our SimPLoID system showcases
this potential within a network-based approach, which facilitates public discourse on behavioural responses at the local
and individual level. This application area benefits especially from the transparency and precisely specified semantics of
the ProbLog language, which are supported by well-maintained engines for Monte Carlo simulation and a variety of other
learning and reasoning tasks.

1. Introduction
There have been some huge landmark events occurring
in the early 2020s. The release of ChatGPT in November
2022 marked the start of a rapid upsurge in public
interest in artificial intelligence. These technologies have
heralded in a new era in the way we work and study, and
have caused considerable concern about the power of
artificial intelligence for good or evil. Writing in 2024,
the far-reaching impacts of the COVID-19 pandemic
still weigh heavy upon the public psyche. This global
phenomenon showed the world how essential policy-
making is in the field of public health and medicine. We
believe that artificial intelligence can be harnessed for
the benefit of public health understanding.

The early days of the COVID-19 pandemic illustrated
the pitfalls of epidemiological modelling in the public eye.
In the first months of the spread of the disease in Europe,
experts came to wildly varying conclusions about the
disease dynamics [1, 2, 3]. One reason why these early
models were unreliable was because of the lack of quality
data. As an emerging infectious disease, information
was constantly being updated during the course of the
pandemic. This shows that the ability to quickly integrate
newly available data into an epidemiological model is
essential.

The modelling results from the scientific community
had a direct impact on national and international politics.
In the face of uncertainty, governments throughout the
world responded very differently, some implementing
a total lockdown, others hoping that "herd immunity"
would quickly be reached [4]. Difficult decisions also
had impacts on the local level, as policies like lockdowns

2nd Workshop on Public Interest AI, September 23, 2024, Würzburg,
DE
*Corresponding author.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

affected everyday life. Individuals or local institutions
must make behavioural decisions to minimise the spread
of disease. On a small scale, network-based models are
particularly helpful, as they model interactions between
individuals in a closed environment. This will help people
understand the interactions of their choices and the
choices of those around them, their immediate effects
locally and how this in turn impacts the bigger picture.

Here, we present a network-based, transparent,
verifiable and adaptable solution for infectious disease
modelling. The high stakes on human health, economic
policies, and societal pressures during the pandemic
highlighted the importance of modelling processes in
political, local, and individual decision making, as well
as public understanding of epidemiology. We hope that
our contribution is a step towards this goal.

Infectious disease modelling
A classical approach to epidemiological modelling
is via compartmental models such as Kermack and
McKendrik’s Susceptible-Infected-Recovered (SIR) model,
which has been used successfully to model many human,
animal and plant diseases [5]. This model divides the
population into the three different stages of disease
infection [6], summarised diagrammatically in Figure
1. The proportion of the population moving from being
susceptible to infected to recovered in each time step is
modelled by differential equations. The classic SIR model
relies on some assumptions which mean it may not be the
best model for all infectious diseases. For instance, a key
assumption is a well-mixed population, the violation of
which during the COVID-19 pandemic led to a significant
deviation from the theoretical distribution of the illness
[8]. Just as importantly, SIR models do not allow the
behaviour of individuals to be encoded, nor do they
allow predictions on the health status of given individuals.
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Figure 1: The classic SIR model, showing Susceptible, Infected and Recovered groups with their modes of transition [7].

Figure 2: An example of a network-based model. Circles represent individuals, which may be either susceptible, infected
or recovered. Lines represent connections between individuals. Across different timesteps, both the compartments of the
individuals and the connections between them can shift.

Given the huge importance of individual behaviour on
public policy, there is a clear need for localised modelling
that can explicitly account for individual behaviour and
contact patterns.

These limitations are addressed by network-based
models, which utilise the fundamental ideas behind SIR
models, but applies them to a contact graph. Here, nodes
represent individuals and edges show the connection
between individuals, which individually are in one of
the compartments of the classical model. As connections
between individuals can change over time, and through
hospitalisation, quarantine or other measures even
in direct response to illness, it is important for the
underlying connection graph to allow for changes over
time.

In this contribution we explore the untapped potential
of probabilistic logic programming for transparent and
scrutable epidemiological modelling at local scales.

More specifically, the particularly simple yet expressive
probabilistic logic programming language ProbLog is
ideal for these purposes, because the parameters and
underlying assumptions of the model are transparent and
immediately accessible [9]. ProbLog is implemented by
the well-maintained ProbLog 2 engine [10], which allows
not only for the calculation of exact probabilities, but also
for simulations to be generated from a specified model
[11]; these useful features allow for the development of
a versatile and extendable epidemiological tool.

Our exploration is set in the the context of
our prototype implementation SimPLoID, short for
Simulations with Probabilistic Logic for Infectious
Diseases. SimPLoID aims to be a flexible and transparent
framework for network-based epidemiological modelling
that is easy to use for researchers, policy-makers
and science communicators who are not trained in
programming. Additionally, the models generated in

2



Felix Weitkämper et al. CEUR Workshop Proceedings 1–8

the SimPLoID framework are designed to represent
individual events that can be combined modularly
and individually critiques or justified. However, the
current implementation is to be regarded as a proof
of concept, showcasing the potential of probabilistic
logic programming for disease epidemiology, rather than
as production software. Its source code is available
at https://gitlab.com/jona5/epidemical-dsl-update/-/tree/
main, but all its features should still be regarded as
subject to change without notice. An indication of what
could be added in future work is given in Section 4. In
addition to visualisation capabilities and a command-line
user interface, SimPLoID encompasses a domain-specific
language (DSL) to specify disease models more succinctly
than in pure ProbLog. However, since the design of the
DSL is still in flux, this paper will focus on the ProbLog
representation itself.

2. Related work
Our contribution is a modelling framework that is
based on probabilistic logic programming. It serves
as a proof of concept for an idea first presented by
Weitkämper et al. [7]. Of course, given the importance
of epidemiological modelling, a variety of tools and
packages are available for this purpose. Most of them
are written in imperative languages, and do not allow
transparent access to modelling parameters beyond the
user’s original settings. They also lack a clear underlying
semantic framework.

However, there are exceptions to this pattern, of which
we name the closest ones to our approach that we are
aware of. There are a number of declarative frameworks
for compartmental modelling, which also support far
more nuanced approaches than the classical SIR model.
Two particular exponents of this direction are Kendrick
[12], whose domain-specific language is compiled to
statements in an imperative host language, and rule-
based models in dedicated rule specification languages
such as 𝜅 [13]. While such aggregate approaches can
capture subtleties beyond pure compartmental models,
they still target larger scale simulations and are unable
to make use of individual-level network data. Other
approaches rely on functional reactive programming in
Haskell as a base formalism for declarative modelling [14,
15]. While declarative, functional reactive programming
is not inherently probabilistic, and therefore verifying
the probabilistic assumptions underlying a simulation
is still difficult. Their implementation depends on
explicit signal generating functions, and the resulting
programs are fully-fledged Haskell programs rather than
accessible probabilistic models such as the probabilistic
logic programs we invoke here.

The approach perhaps closest to our own is that of

EMULSION [16], which supports both compartmental
and network-based approaches. Features of EMULSION
include a graphical user interface for simulations as well
as statistical tools for analysing simulations. EMULSION
compiles the model file, written in its purpose-built
domain-specific language, into a set of finite state
machines, one for every modelled quantity. In a network-
based model, this means a single finite state machine
for every individual in the simulation. As this concept
is closest to our approach, we discuss the differences
between probabilistic logic programs and finite state
machines as compilation targets in Section 4.

3. System description
Models and queries are processed in two steps. First, a
model file, written in a dedicated DSL, is parsed and
compiled into ProbLog clauses. Model files contain
simple statements about the disease under investigation.
A model file can be supplemented by default settings,
which are contained in a default file, to avoid the strain
of repetitive specifications. Individuals and their network
of contacts can either be generated randomly, triggered
by a corresponding statement in the model file, or they
are specified as an additional file and loaded directly into
ProbLog 2.

The ProbLog language allows for succinct sets
of probabilistic rules which match natural human
understanding quite closely. This is especially true when
making use of the various language extensions supported
by the ProbLog 2 engine, in particular the support for
inhibition effects [17]. A detailed discussion of ProbLog
and the capabilities and implementation of the ProbLog
2 system can be found in the comprehensive paper by
Fierens et al. [10].

Here, we illustrate the ProbLog representation using
an example. A simple network-based SIR model is given
by Listing 1. We see here that we can load persons and
airborne contacts from CSV files, rather than crowding
our program by having to assert them explicitly. The
relevant time points are provided using the Prolog builtin
between/3, which is also available in ProbLog 2, as is the
basic Prolog arithmetic used in the remaining clauses.
The clause at Line 7 asserts that being susceptible is the
default value, which holds for all persons and time points
unless there is a reason for it not to hold. Lines 9 and
21 then give the exceptions to this rule: Whenever an
individual is either resistant or currently infected, they
are not susceptible. Line 11 models the extrinsic rate of
infection, where there is a 0.1 chance at any timestep
for an individual to be infected from a cause outside
of the system we are modelling. The clause at Line 14
models the intrinsic infection rate caused by airborne
contact between a susceptible and an infected individual.
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Listing 1: ProbLog code for a flu model with SIR compartments

1: − use_module ( l i b r a r y ( db ) ) .
2: − c s v _ l o a d ( ’ i n d i v i d u a l s L i s t . csv ’ , ’ person ’ ) .
3: − c s v _ l o a d ( ’ c o n t a c t L i s t . csv ’ , ’ a i r b o r n e _ c o n t a c t ’ ) .
4
5t ime (N) : −
6between ( 1 , 1 2 ,N) .
7f l u _ _ s u s c e p t i b l e ( X , N) : −
8t ime (N) , person (X) .
9\+ f l u _ _ s u s c e p t i b l e ( X , N) : −
10t ime (N) , f l u _ _ i n f e c t e d ( X , N) .
110 . 1 : : f l u _ _ i n f e c t e d ( X ,M) : −
12t ime (M) , N i s M−1 , \+ f l u _ _ i n f e c t e d ( X , N) ,
13f l u _ _ s u s c e p t i b l e ( X , N) .
140 . 8 : : f l u _ i n f e c t e d ( X ,M) : −
15t ime (M) , N i s M−1 , a i r b o r n e _ c o n t a c t ( X , Y , N) ,
16f l u _ s u s c e p t i b l e ( X , N) , f l u _ i n f e c t e d ( Y , N) .
17f l u _ _ i n f e c t e d ( X ,M) : −
18t ime (M) , N i s M−1 , f l u _ _ i n f e c t e d ( X , N) .
19\+ f l u _ _ i n f e c t e d ( X ,M) : −
20t ime (M) , N i s M−7 , f l u _ _ i n f e c t e d ( X , N) .
21\+ f l u _ _ s u s c e p t i b l e ( X , N) : −
22t ime (N) , f l u _ _ r e s i s t a n t ( X , N) .
23f l u _ _ r e c o v e r e d ( X ,M) : −
24t ime (M) , N i s M−1 , f l u _ _ i n f e c t e d ( X , N) ,
25\+ f l u _ _ i n f e c t e d ( X ,M) .
260 . 9 : : f l u _ _ r e s i s t a n t ( X , N) : −
27t ime (N) , f l u _ _ r e c o v e r e d ( X , N) .
28f l u _ _ r e s i s t a n t ( X ,M) : −
29t ime (M) , N i s M−1 , f l u _ _ r e s i s t a n t ( X , N) .
30
31query ( f l u _ _ s u s c e p t i b l e ( X , N) ) .
32query ( f l u _ _ i n f e c t e d ( X , N) ) .
33query ( f l u _ _ r e c o v e r e d ( X , N) ) .
34query ( f l u _ _ r e s i s t a n t ( X , N) ) .

Line 17 models that in principle, if someone is ill in one
timestep they will still be ill in the next timestep. Line
19 then models recovery after a fixed time of infection,
the inhibitor with the negated head again "overruling"
the previous clause. Note that a stochastic duration of
illness could also be modelled by replacing these two
clauses with a single probabilistic clause. Line 23 explains
that an individual is recovered if they had been ill in the
previous timestep but are no longer ill in the current
timestep. Line 26 asserts that there is a 0.9 chance of
obtaining immunity upon recovery, and Line 28 ensures
that immunity is permanent.

Observe in particular the modularity of the ProbLog
code: Every possible cause for infection can be added
and removed separately, without any alteration to the
remainder of the program. Those causes are then treated

as independent possible triggers for the event specified by
the head. For instance, if an individual has contact with
two infected individuals in a given timestep, the program
above will calculate three separate and independent
grounds for infection, the two contacts and the baseline
rate, resulting in an overall infection probability of

1− (1− 0.1)(1− 0.8)(1− 0.8) = 0.964

according to the laws of probability.
The query goals in the final four lines instruct

ProbLog 2 to simulate susceptible, infected, recovered
and resistant individuals. Note that had fewer goals been
queried, the simulation engine would still have had to
simulate almost all of the other ground atoms since they
are all mutually connected through the program clauses.
Thus there is little efficiency gain expected from querying

4



Felix Weitkämper et al. CEUR Workshop Proceedings 1–8

0 50 100
0

20

40

time (weeks)

in
fe

ct
ed

(in
di

vi
du

al
s)

0 50 100
0

20

40

time (weeks)

in
fe

ct
ed

(in
di

vi
du

al
s)

Figure 3: SimPLoID output graphs showing the progress of the number of infected individuals over time from different
settings (scatter plot vs line graph, 1 vs 5 simulations, short vs long period of resistance)

only for, say, the infected individuals. These clauses
are then passed to the ProbLog 2 system, whose Monte
Carlo engine [11] then generates one or more simulation
runs. Their results in turn can be processed by various
Python utilities for graphing and tabulating the output.
In our application, we use the mathplotlib package [18]
for graphing.

To further enhance usability, the different functions
of our application can be accessed from an interactive
shell, which also provides help and documentation on
the different available options. Several well-known
disease models have been implemented using the system,
including different transmission forms, vaccination
regimes and maternally-derived immunity.

It is also possible to include further information such
as the number of simulation runs or whether individuals
and their contacts should be generated automatically or
loaded from a file, and which compartments should be
queried. However, these metaparameters can also be
specified in the interactive shell, which has been found
preferable in most cases.

After running the simulation, the results of the
individual runs can be graphed or tabulated, either
collectively or individually. Figure 3 shows different ways
of displaying the simulation outcomes, with different
periods of immunity.

The ProbLog code generated by the current
implementation is still in parts more verbose than the
code example given in Listing 1, but it follows closely
the structure illustrated there. The main deviation is that
for performance reasons, our implementation explicitly
grounds out the time variable in a preprocessing stage
since the general grounding algorithm in ProbLog proved
to be an efficiency bottleneck for larger simulations.

4. Discussion
The declarative, intrinsically probabilistic nature of
ProbLog specifications can be a huge asset. A ProbLog
program is made up modularly of individual clauses,
which have an interpretation as independent, individual
events. This makes them understandable and open to
scrutiny individually. Thus, criticism or justification of
a model can be reduced to criticism of individual claims.
This modularity distinguishes ProbLog from, say, the
finite state machines underpinning EMULSION, which
manually aggregate effects within one state transition.
Furthermore, ProbLog’s support for inhibition effects
[17], which provide a concise and easily readable syntax
for conditions which prevent an event by negating
the head, extends modularity and clear semantics to
preventative effects. Despite the detailed individual-
level models, the ProbLog programs are kept compact
and readable by encoding classes of events in first-order
relational rules that are parameterised by variables.

Among probabilistic logic programming languages,
ProbLog is particularly simple in its syntax, and
simulation is supported by two well-maintained
implementations, cplint (in Prolog) and ProbLog 2 (in
Python) [11, 19]. Beyond simulation, they provide a
variety of sophisticated learning and inference modes
which could be added in future versions without altering
the process generating the underlying ProbLog model.
For instance, there are current plans to incorporate a
learning mode which allows the estimation of disease
parameters from observational data, which would
ordinarily require a complete rewrite of the software.

The main price to be paid for our approach is in
the mediocre performance of the MCMC sampling
process. This has two main causes. Firstly, the Python
implementation of MCMC sampling in ProbLog 2 is
optimised for ease of use rather than performance, as
has been demonstrated empirically in the past [19].
Secondly, the code automatically generated by our
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translator is itself not ideal, since it does not cleanly
separate deterministic and stochastic predicates. This
is particularly problematic since in our experience,
deterministic predicates tend to perform rather poorly
under ProbLog 2 compared to state-of-the-art Prolog
systems. However, the key focus of our work is not
to provide a computationally competitive modelling
framework. Rather, we want to offer a system for fine-
grained local analysis that can illustrate the effect of
behavioural choices in an individual’s immediate vicinity.

Public interest discussion
We believe that our contribution is a step towards
artificial intelligence for the social good. Although the
notion of "public interest" can be difficult to define,
authors have put forward frameworks to understand
artificial intelligence in this context [20, 21].

For example, Züger and Asghari [21] outline some
requirements that should be met for artificial intelligence
applications to be considered "serving the public interest".
Firstly, our approach uses artificial intelligence to
understand infectious disease dynamics on a local
scale, thereby having a public rather than a profit
oriented justification. As probabilistic logic programming
models of infectious disease are explicit and human-
interpretable, bias and discrimination in the models is
open to public scrutiny. By giving the general public
the opportunity to evaluate the consequences of their
actions against verifiable, openly accessible local models,
we hope to contribute to a closing of the knowledge
gap between experts, policymakers and those affected by
their decisions.

Transparent specifications can ultimately move the
field towards a truly "deliberative and participatory
design process" [21, Subsection 3.3] of epidemiological
models, as the model assumptions themselves can be
critiqued and refined by members of the public.

This is not only important for the medical and
policy reaction to epidemics, but also for public
communication. The effectiveness of measures taken
in response to epidemics depends crucially on the
behaviour of individual actors. On the other hand,
public health interventions have profound implications
for the daily life and the wider prospects of individuals,
posing challenges to both political culture and social
cohesion. Individual-level, network-based approaches to
epidemiological modelling are of particular significance
for communication, since they can be used to model the
impact of an epidemic on an individual himself and their
own close circle.

This puts a huge weight on communicating the impact
of measures to the public in a transparent and responsible
way. This brings us to Züger and Asghari’s [21] final two
requirements for public interest: that public interest AI

systems need to implement technical safeguards, and that
these systems need to be open to validation. Validation of
simulation systems is a multi-faceted issue, which covers
the validation of the model assumptions, validation of the
model under those assumptions, and the validation of the
simulation framework. In our case, validating the model
itself is out of scope, since our solution is presented as a
general framework for user-specified models. However,
the transparent design and the clear semantics of the
Problog language make the underlying assumptions of
the models explicit and endow the modelling code with
intuitively meaningful formal content that can then be
externally validated as desired.

As a proof of concept that is not yet designed for
public usage, no further technical safeguards have been
implemented in the current version of SimPLoID. In
particular, the responsibility for ensuring data privacy
lies with the user of the system. However, SimPLoID is
entirely stand-alone, with no data transmission taking
place at any stage in the process. Therefore, sensitive
data entered into the system by the user remains entirely
within the user’s domain.

5. Outlook
Although competitive performance is not the ultimate
aim of SimPLoID, epidemiological modelling can serve
as a motivating application for the further development
of probabilistic logic programming tools, systems and
algorithms. Currently, work is ongoing to enhance
the performance by transitioning from ProbLog 2 to
a variant of the cplint system, more specifically to a
sampling algorithm adapted from MCINTYRE [19] under
the XSB Prolog system [22]. This is made possible
by the recent release of the Janus bridge [23], which
allows for a seamless integration of XSB from Python and
thereby mitigates the downside of using a system from
outside the host programming language of SimPloID.
The availability of a competitive tabled Prolog engine
such as XSB would also obviate the need for manually
grounding out the time variable in a preprocessing step,
keeping the programs passed to the engine compact. On
the other hand, porting our application also requires
adding support for inhibition effects by reimplementing
the syntactic transformation described by Meert and
Vennekens [17].

6. Conclusion
By making available a proof-of-concept prototype of a
network-based epidemiological simulation suite based on
ProbLog, we demonstrate the potential of probabilistic
logic programming for supporting the discourse around
public health and the effects of individual choices. The
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suitability of probabilistic logic programming for this
purpose is underpinned by its human-readable relational
syntax and its well-defined declarative semantics, which
sees separate clauses as independent causes of a
prescribed effect. As a programming language can only
ever be as usable as the systems that implement it, our
framework demonstrates that the ProbLog ecosystem is
sufficiently mature to support such an application, and
opens the doors to various extensions enabled by the
variety of query types and algorithms it provides.
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